CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Preliminaries

Preliminaries

Today, we're going to learn how to add \& multiply.

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting!

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition.

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition. Some questions:

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition. Some questions:
(1) How big can the sum be (at most)? What is the worst case?

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition. Some questions:
(1) How big can the sum be (at most)? What is the worst case?
(2) How long does summation take in the worst case?

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition. Some questions:
(1) How big can the sum be (at most)? What is the worst case?
(2) How long does summation take in the worst case? Why?

Preliminaries

Today, we're going to learn how to add \& multiply. Exciting! Let's add two positive n-bit integers ($n=8$ here):

Carry:	1111111
Augend:	10110111
Addend:	+10011101

Sum:	101010100

This is called ripple-carry addition. Some questions:
(1) How big can the sum be (at most)? What is the worst case?
(2) How long does summation take in the worst case? Why? ...we'll come back to this!

History

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII First electronic digital computer created in 1943 \Rightarrow Electronic Numerical Integrator and Computer (ENIAC)

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII First electronic digital computer created in 1943 \Rightarrow Electronic Numerical Integrator and Computer (ENIAC)

First description of parallel programs in 1958 (Stanley Gill)

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII First electronic digital computer created in 1943 \Rightarrow Electronic Numerical Integrator and Computer (ENIAC)

First description of parallel programs in 1958 (Stanley Gill)
First multiprocessor system (Multics) in 1969

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII First electronic digital computer created in 1943
\Rightarrow Electronic Numerical Integrator and Computer (ENIAC)
First description of parallel programs in 1958 (Stanley Gill)
First multiprocessor system (Multics) in 1969
Lots of parallel computing research starting in 1970s...

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea

First theory of computation by Alan Turing in 1936
First electronic analog computer created in 1942 for bombing in WWII
First electronic digital computer created in 1943
\Rightarrow Electronic Numerical Integrator and Computer (ENIAC)
First description of parallel programs in 1958 (Stanley Gill)
First multiprocessor system (Multics) in 1969
Lots of parallel computing research starting in 1970s... then faded away

History

First computer design (difference engine) in 1822 (!!) and later, the analytical engine, by Charles Babbage (1791-1871)

First description of "MIMD" parallelism in 1842 (!!!) in Sketch of The Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea

First theory of computation by Alan Turing in 1936
First electronic analog computer created in 1942 for bombing in WWII
First electronic digital computer created in 1943
\Rightarrow Electronic Numerical Integrator and Computer (ENIAC)
First description of parallel programs in 1958 (Stanley Gill)
First multiprocessor system (Multics) in 1969
Lots of parallel computing research starting in 1970s... then faded away
Multi-core systems reinvigorated parallel computing around 2001

History

History

Long story short...

History

Long story short...

- Parallel computing goes back longer than you think

History

Long story short...

- Parallel computing goes back longer than you think
- Lots of useful research from the 1900s finding life again since processors stopped getting faster

Terminology

Some basic terminology:

Terminology

Some basic terminology:

- Process: A running program

Processes cannot access each others' memory by default

Terminology

Some basic terminology:

- Process: A running program

Processes cannot access each others' memory by default

- Thread: A unit of program flow (N threads $=n$ independent executions of code) Threads maintain their own execution contexts in a given process

Terminology

Some basic terminology:

- Process: A running program

Processes cannot access each others' memory by default

- Thread: A unit of program flow (N threads $=n$ independent executions of code) Threads maintain their own execution contexts in a given process
- Thread context: All the information a thread needs to run code This includes the location of the code that it is currently being executing, as well as its current stack frame (local variables, etc.)

Terminology

Some basic terminology:

- Process: A running program

Processes cannot access each others' memory by default

- Thread: A unit of program flow (N threads $=n$ independent executions of code)
Threads maintain their own execution contexts in a given process
- Thread context: All the information a thread needs to run code This includes the location of the code that it is currently being executing, as well as its current stack frame (local variables, etc.)
- Concurrency: Overlapping operations (X begins before Y ends)

Terminology

Some basic terminology:

- Process: A running program

Processes cannot access each others' memory by default

- Thread: A unit of program flow (N threads $=n$ independent executions of code)
Threads maintain their own execution contexts in a given process
- Thread context: All the information a thread needs to run code This includes the location of the code that it is currently being executing, as well as its current stack frame (local variables, etc.)
- Concurrency: Overlapping operations (X begins before Y ends)
- Parallelism: Simultaneously-occurring operations (multiple operations happening at the same time)

Terminology

Terminology

Parallel operations are always concurrent by definition

Terminology

Parallel operations are always concurrent by definition
Concurrent operations need not be in parallel (open door, open window, close door, close window)

Terminology

Parallel operations are always concurrent by definition
Concurrent operations need not be in parallel (open door, open window, close door, close window)

Parallelism gives you a speed boost (multiple operations at the same time), but requires N processors for $N \times$ speedup

Terminology

Parallel operations are always concurrent by definition
Concurrent operations need not be in parallel (open door, open window, close door, close window)

Parallelism gives you a speed boost (multiple operations at the same time), but requires N processors for $N \times$ speedup

Concurrency allows you to avoid stopping one thing before starting another, and can occur on a single processor

Concepts

Concepts

Distributed computation (running on multiple machines) is more difficult:

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines $=$ higher failure probability)

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines $=$ higher failure probability)
- Lack of shared memory

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines $=$ higher failure probability)
- Lack of shared memory
- More limited communication bandwidth (network slower than RAM)

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines $=$ higher failure probability)
- Lack of shared memory
- More limited communication bandwidth (network slower than RAM)
- Time becomes problematic to handle

Concepts

Distributed computation (running on multiple machines) is more difficult:

- Needs fault-tolerance (more machines $=$ higher failure probability)
- Lack of shared memory
- More limited communication bandwidth (network slower than RAM)
- Time becomes problematic to handle

Rich literature, e.g. actor-based models of computation (MoC) such as discrete-event, synchronous-reactive, synchronous dataflow, etc. for analyzing/designing systems with guaranteed performance or reliability

Threading

Threading example:

```
import threading
t = threading.Thread(target=print, args=('a',))
t.start()
print('b') # may print 'b' before or after 'a'
t.join() # wait for t to finish
```


Threading

Race condition:

Threading

Race condition: When a thread attempts to access something being modified by another thread.

Threading

Race condition: When a thread attempts to access something being modified by another thread. Race conditions are generally bad.

Threading

Race condition: When a thread attempts to access something being modified by another thread. Race conditions are generally bad.

Example:

```
import threading
lst = [0]
def f():
    lst[0] += 1 # write 1 might occur after read 2
t = threading.Thread(target=f)
t.start()
f()
t.join()
assert lst[0] in [1, 2] # could be any of these!
```


Concurrency Control

Mutex (Lock in Python): Object that can prevent concurrent access (mutual-exclusion).

Concurrency Control

Mutex (Lock in Python): Object that can prevent concurrent access (mutual-exclusion). Example:

```
import threading
lock = threading.Lock()
lst = [0]
def f():
    lock.acquire() # waits for mutex to be available
    lst[0] += 1 # only one thread may run this code
    lock.release() # makes mutex available to others
t = threading.Thread(target=f)
t.start()
f()
t.join()
assert lst[0] in [2] # will always succeed
```


Concurrency Control

${ }^{1}$ However, Python code can release GIL when calling non-Python code.

Concurrency Control

Sadly, in CPython, multithreaded operations cannot occur in parallel, because there is a "global interpreter lock" (GIL). Therefore, Python code cannot be sped up in CPython. ${ }^{1}$

[^0]
Concurrency Control

Sadly, in CPython, multithreaded operations cannot occur in parallel, because there is a "global interpreter lock" (GIL). Therefore, Python code cannot be sped up in CPython. ${ }^{1}$

To obtain parallelism in CPython, you can use multiprocessing: running another copy of the program and communicating with it.

[^1]
Concurrency Control

Sadly, in CPython, multithreaded operations cannot occur in parallel, because there is a "global interpreter lock" (GIL). Therefore, Python code cannot be sped up in CPython. ${ }^{1}$

To obtain parallelism in CPython, you can use multiprocessing: running another copy of the program and communicating with it. Jython, IronPython, etc. can run Python in parallel, and most other languages support parallelism as well.

[^2]
Inter-Thread and Inter-Process Communication (IPC)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)
- Cons: Must block execution until lock is acquired (slow)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)
- Cons: Must block execution until lock is acquired (slow)
- Message-passing: sending data through thread-safe queues

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)
- Cons: Must block execution until lock is acquired (slow)
- Message-passing: sending data through thread-safe queues
- Pros: Queue can buffer \& work asynchronously (faster)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)
- Cons: Must block execution until lock is acquired (slow)
- Message-passing: sending data through thread-safe queues
- Pros: Queue can buffer \& work asynchronously (faster)
- Cons: Increases need to copy data (slower/more memory)

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:

- Shared memory: mutating shared objects (if all on 1 machine)
- Pros: Reduces copying of data (faster/less memory)
- Cons: Must block execution until lock is acquired (slow)
- Message-passing: sending data through thread-safe queues
- Pros: Queue can buffer \& work asynchronously (faster)
- Cons: Increases need to copy data (slower/more memory)
- Pipes: synchronous version of message-passing ("rendezvous")

Inter-Thread and Inter-Process Communication (IPC)

Inter-Thread and Inter-Process Communication (IPC)

Message-passing example for parallelizing $f(x)=x^{2}$:
from multiprocessing import Process, Queue def f(q_in, q_out):
while True:
x = q_in.get()
if x is None: break
q_out.put(x ** 2) \# real work
if __name__ == '__main__': \# only on main thread qs = (Queue(), Queue()) procs = [Process(target=f, args=qs) for _ in range(4)]
for proc in procs: proc.start()
for i in range(10): qs[0].put(i)
\# send inputs
for i in range(10): print(qs[1].get()) \# receive outputs
for proc in procs: qs[0].put(None) \# notify finished
for proc in procs: proc.join()

Addition

Addition

Common parallelism technique: divide-and-conquer

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:
(1) Split each n-bit number into p pieces

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:
(1) Split each n-bit number into p pieces
(2) XOR each n / p-bit pair of numbers independently

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:
(1) Split each n-bit number into p pieces
(2) XOR each n / p-bit pair of numbers independently
(3) Put back the bits together

Addition

Common parallelism technique: divide-and-conquer
(1) Divide problem into separate subproblems
(2) Solve subproblems in parallel
(3) Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:
(1) Split each n-bit number into p pieces
(2) XOR each n / p-bit pair of numbers independently
(3) Put back the bits together

Can we do something similar with addition?

Addition

Addition

Let's go back to addition.

Addition

Let's go back to addition.
We have two n-bit numbers to add.

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(1) ...

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(9) ...
(5) Profit?

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(1) ...
(5) Profit? No?

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(1) ...
(6) Profit? No? What's wrong?

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(9) ...
© Profit? No? What's wrong?
We need to propagate carries!

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(9) ...
© Profit? No? What's wrong?
We need to propagate carries! How long does it take?

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(9) ...
(6) Profit? No? What's wrong?

We need to propagate carries! How long does it take? $\Theta(n)$ time

Addition

Let's go back to addition.
We have two n-bit numbers to add.
What if we take the same approach for + as for XOR?
(1) Split each n-bit number into p pieces
(2) Add each n / p-bit pair of numbers independently
(3) Put back the bits together
(1) ...
© Profit? No? What's wrong?
We need to propagate carries! How long does it take? $\Theta(n)$ time (How) can we do better?

Addition

Addition

Key idea \#1:

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel...

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry!

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively.

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth
- We solve two problems of half the size simultaneously

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth
- We solve two problems of half the size simultaneously
- We combine solutions with constant extra work

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth
- We solve two problems of half the size simultaneously
- We combine solutions with constant extra work
- Therefore, parallel running time is $\Theta(\log n)$

Addition

Key idea \#1: A carry can be either 0 or $1 \ldots$ and we add different pieces in parallel... and then select the correct one based on carry! \Rightarrow This is called a carry-select adder.

Key idea \#2: We can do this recursively. \Rightarrow This is called a conditional-sum adder.

How fast is a conditional-sum adder?

- Running time is proportional to maximum propagation depth
- We solve two problems of half the size simultaneously
- We combine solutions with constant extra work
- Therefore, parallel running time is $\Theta(\log n)$

However, we do more work: $T(n)=2 T(n / 2)+c=\Theta(n \log n)$

Addition

Addition

Other algorithms also exist with different trade-offs:

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder
- Han-Carlson adder

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder
- Han-Carlson adder
- Lynch-Swartzlander spanning tree adder (fastest?)

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder
- Han-Carlson adder
- Lynch-Swartzlander spanning tree adder (fastest?)
...I don't know them. But $\Theta(\log n)$ is already asymptotically optimal. :-)

Addition

Other algorithms also exist with different trade-offs:

- Carry-skip adder
- Carry-lookahead adder (CLA)
- Kogge-Stone adder ("parallel-prefix" CLA; widely used)
- Brent-Kung adder
- Han-Carlson adder
- Lynch-Swartzlander spanning tree adder (fastest?)
...I don't know them. But $\Theta(\log n)$ is already asymptotically optimal. :-)
Some algorithms are better suited for hardware due to lower "fan-out": e.g. 1 bit is too "weak" to drive 16 bits all by itself.

Multiplication

Multiplication

How do we multiply?

Multiplication

How do we multiply?

Multiplicand Multiplier:	10110111	
		* 10011101
		10110111
	+	00000000
	+	10110111
	+	10110111
	+	10110111
		00000000
		0000000
		0110111
Product		11000000111011

Product:
111000000111011

Multiplication

Multiplication

For two n-bit numbers, how long does it take in parallel?

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions
- Each addition takes $\Theta(\log n)$ depth

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions
- Each addition takes $\Theta(\log n)$ depth
- Total depth is therefore $\Theta\left((\log n)^{2}\right)$

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions
- Each addition takes $\Theta(\log n)$ depth
- Total depth is therefore $\Theta\left((\log n)^{2}\right)$
...can we do better? :-)

Multiplication

For two n-bit numbers, how long does it take in parallel?

- Multiplication by 1 is a copy, taking $\Theta(1)$ depth
- There are n additions
- Divide-and-conquer therefore takes $\Theta(\log n)$ additions
- Each addition takes $\Theta(\log n)$ depth
- Total depth is therefore $\Theta\left((\log n)^{2}\right)$
...can we do better? :-) How?

Multiplication

${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:
${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:

- Compute all carry bits r independently \Rightarrow This is just OR, so $\Theta(1)$ depth

[^3]
Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:

- Compute all carry bits r independently \Rightarrow This is just OR, so $\Theta(1)$ depth
- Compute all sums-excluding-carries s independently \Rightarrow This is just XOR, so $\Theta(1)$ depth

[^4]
Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:

- Compute all carry bits r independently \Rightarrow This is just OR, so $\Theta(1)$ depth
- Compute all sums-excluding-carries s independently \Rightarrow This is just XOR, so $\Theta(1)$ depth
- Recurse on new $r_{1}+s_{1}+r_{2}+s_{2}+\ldots$ until final $r+s$ is obtained. \Rightarrow This takes $\Theta(\log n)$ levels of recursion

[^5]
Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:

- Compute all carry bits r independently \Rightarrow This is just OR, so $\Theta(1)$ depth
- Compute all sums-excluding-carries s independently \Rightarrow This is just XOR, so $\Theta(1)$ depth
- Recurse on new $r_{1}+s_{1}+r_{2}+s_{2}+\ldots$ until final $r+s$ is obtained. \Rightarrow This takes $\Theta(\log n)$ levels of recursion
- Compute final sum in additional $\Theta(\log n)$ depth

[^6]
Multiplication

Carry-save addition: reduce every $a+b+c$ into $r+s$ in parallel:

- Compute all carry bits r independently \Rightarrow This is just OR, so $\Theta(1)$ depth
- Compute all sums-excluding-carries s independently \Rightarrow This is just XOR, so $\Theta(1)$ depth
- Recurse on new $r_{1}+s_{1}+r_{2}+s_{2}+\ldots$ until final $r+s$ is obtained. \Rightarrow This takes $\Theta(\log n)$ levels of recursion
- Compute final sum in additional $\Theta(\log n)$ depth

Total depth is therefore $\Theta(\log n)!^{2}$

[^7]
Parallel Prefix

Parallel Prefix

There isn't too much special about addition from basic arithmetic.

Parallel Prefix

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative!

Parallel Prefix

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative! Parallel addition can be generalized this way, called "parallel prefix":

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative! Parallel addition can be generalized this way, called "parallel prefix":

- Say we want to compute cumulative sum of $1,2,3, \ldots$

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative! Parallel addition can be generalized this way, called "parallel prefix":

- Say we want to compute cumulative sum of $1,2,3, \ldots$
- First, group into binary tree: $(((12)(34))((56)(78)))$...

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative!
Parallel addition can be generalized this way, called "parallel prefix":

- Say we want to compute cumulative sum of $1,2,3, \ldots$
- First, group into binary tree: $(((12)(34))((56)(78)))$...
- Then, evaluate sums for all nodes recursively toward root

Parallel Prefix

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative!
Parallel addition can be generalized this way, called "parallel prefix":

- Say we want to compute cumulative sum of $1,2,3, \ldots$
- First, group into binary tree: $(((12)(34))((56)(78)))$...
- Then, evaluate sums for all nodes recursively toward root
- Finally, propagate sums back down from root to right-hand children

Parallel Prefix

There isn't too much special about addition from basic arithmetic.
Often the same tricks apply to any binary operator \bigoplus that is associative! Parallel addition can be generalized this way, called "parallel prefix":

- Say we want to compute cumulative sum of $1,2,3, \ldots$
- First, group into binary tree: $(((12)(34))((56)(78)))$...
- Then, evaluate sums for all nodes recursively toward root
- Finally, propagate sums back down from root to right-hand children

This is a very flexible operation, useful as a basic parallel building block. (More notes can be found on MIT's website.)

MapReduce

A common pattern for parallel data processing is:

MapReduce

A common pattern for parallel data processing is:
from functools import reduce
outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)

MapReduce

A common pattern for parallel data processing is:
from functools import reduce
outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)

- map you have already seen: it transforms elements

MapReduce

A common pattern for parallel data processing is:

from functools import reduce

outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)

- map you have already seen: it transforms elements
- reduce is anything like,$+ \times$ to summarize elements

MapReduce

A common pattern for parallel data processing is:

```
from functools import reduce
outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)
```

- map you have already seen: it transforms elements
- reduce is anything like,$+ \times$ to summarize elements
- Transformations assumed to ignore order (to allow parallelism)

MapReduce

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

Fault-tolerance is handled automatically

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

Fault-tolerance is handled automatically (why is this possible?)

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

Fault-tolerance is handled automatically (why is this possible?)
Apache Hadoop later developed as an open-source implementation

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

Fault-tolerance is handled automatically (why is this possible?)
Apache Hadoop later developed as an open-source implementation
"MapReduce" became a general programming model for distributed data processing

MapReduce

Google recognized this and built a fast framework called MapReduce for automatically parallelizing \& distributing such code across a cluster

- MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat (2004)
- System and method for efficient large-scale data processing U.S. Patent 7,650,331

Fault-tolerance is handled automatically (why is this possible?)
Apache Hadoop later developed as an open-source implementation
"MapReduce" became a general programming model for distributed data processing

Spark (Matei Zaharia, UCB AMPLab, now at Databricks) developed as a faster implementation that processes data in RAM

MapReduce

Parallel map is easy in Python!

MapReduce

Parallel map is easy in Python!

```
>>> import math
>>> from multiprocessing.pool import Pool
>>> pool = Pool()
>>> pool.map(math.sqrt, [1, 2, 3, 4])
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]
```


MapReduce

Parallel map is easy in Python!

```
>>> import math
>>> from multiprocessing.pool import Pool
>>> pool = Pool()
>>> pool.map(math.sqrt, [1, 2, 3, 4])
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]
```

This a higher-level threading construct that makes your life simpler.

MapReduce

Not everything fits into a MapReduce model

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly
- Mappers might depend on many inputs

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly
- Mappers might depend on many inputs
- Mappers may need lots of communication

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly
- Mappers might depend on many inputs
- Mappers may need lots of communication
- Computation may not be nicely "layered" at all

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly
- Mappers might depend on many inputs
- Mappers may need lots of communication
- Computation may not be nicely "layered" at all

MapReduce

Not everything fits into a MapReduce model

- Inputs may be generated on the fly
- Mappers might depend on many inputs
- Mappers may need lots of communication
- Computation may not be nicely "layered" at all

Parallel \& distributed computation still an open research problem.

[^0]: ${ }^{1}$ However, Python code can release GIL when calling non-Python code.

[^1]: ${ }^{1}$ However, Python code can release GIL when calling non-Python code.

[^2]: ${ }^{1}$ However, Python code can release GIL when calling non-Python code.

[^3]: ${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

[^4]: ${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

[^5]: ${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

[^6]: ${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

[^7]: ${ }^{2}$ Simplified; detailed analysis is a little tedious. See here.

