
CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 1 / 23

Motivation

How would you find a substring inside a string?

Something like this? (Is this good?)

def find(string, pattern):
n = len(string)
m = len(pattern)
for i in range(n - m + 1):

is_match = True
for j in range(m):

if pattern[j] != string[i + j]
is_match = False
break

if is_match:
return i

What if you were looking for a pattern? Like an email address?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 23

Background

Text processing has been at the heart of computer science since the 1950s

Regular languages: 1950s (Kleene)

Context-free languages (CFLs): 1950s (Chomsky)

Regular expressions (regexes) & automata: 1960s (Thompson)

LR parsing (left-to-right, rightmost-derivation): 1960s (Knuth)

Context-free parsers: 1960s (Earley)

String searching (Knuth-Morris-Pratt, Boyer-Moore, etc.): 1970s

Periods & critical factorizations: 1970s (Cesari-Vincent)

[...] Critical factorizations in linear complexity: 2016 (Kosolobov)

Research is still ongoing ...apparently more in Europe?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 23

Background

Most of you will probably graduate without learning string processing.

Instead, you’ll learn how to process images and Big Data™.

Which makes me sad. :(You should know how to solve solved problems!

Learn & use 100%-accurate algorithms before 85%-accurate ones!

O(mn)-time str.find(substring) is bad! You can do much better:

Good algorithms finish in O(m + n) time & space (e.g. Z algorithm)

The best/coolest finish in O(m + n) time but O(1) space!!!

So, today, I’ll teach a bit about string processing. :)

You can learn more in CS 164, CS 176, etc. (Have fun!)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 23

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/zalg.pdf

Formal Languages

In formal language theory:

Alphabet: any set (usually a character set, like English or ASCII)
→ Often denoted by Σ

Letter: an element in the given alphabet, e.g. “x”

String (or word): finite sequence of letters, e.g. “hi”

Language: a set of strings, e.g. {“a”, “aa”, “aaa”, . . . }
→ Often denoted by L

We might omit the quotes/braces, so we’ll use the following denotations:

ε: empty string (i.e., “”)

∅: empty language (i.e., empty set {})

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 23

Formal Grammars

Languages can be infinite, so we can’t always list all the strings in them.
We therefore use grammars to describe languages.

For example, this grammar describes L = {“”, “hi”, “hihi”, . . .}:

S → T
T → ε
T → T "h" "i"

We call S a nonterminal symbol and “h” a terminal symbol (i.e., letter).
Each line is a production rule, producing a sentential form on the right.

To make life easier, we’ll denote these by uppercase and lowercase
respectively, omitting quotes and spaces when convenient.
We then merge and simplify rules via the pipe (OR) symbol:

S → S hi | ε

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 23

Regular Languages

The following are regular languages over the alphabet Σ:

∅

{ε}

{σ} ∀ σ ∈ Σ

The union A ∪ B of any regular languages A and B over Σ

The concatenation AB of any regular languages A and B over Σ

The repetition (Kleene star) A∗ of any regular language A over Σ
A∗ = {ε} ∪ A ∪ AA ∪ AAA ∪ . . .

Notice that all finite languages are regular, but not all infinite languages.

Regular languages do not allow arbitrary “nesting” (e.g. parens).

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 23

Regular Grammars

A regular grammar is a grammar in which all productions have at most
one nonterminal symbol, all of which appear on either the left or the right.

In other words, this is a regular grammar:

S → A b c
A → S a | ε

This is not a regular grammar (but it is linear and context-free):

S → A b c
A → a S | ε

and neither is this (it is context-sensitive):

S → S s | ε
S s → S t

A language is regular iff it can be described by a regular grammar.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 23

Regular Expressions

A regular expression is an easier way to describe a regular language.
It’s essentially a pattern for describing a regular language.
For example, in [abcw-z]*(1+2|3)?4\?, we have:

[abcw-z] (a character set) means “either a, b, c, w, x, y, or z”.

Asterisk (a.k.a. “Kleene star”, a quantifier) means “zero or more”

Plus (another quantifier) means “one or more”

Question mark (another quantifier) means “at most one”

Backslash (“escape”) before a special character means that character

Pipe (the OR symbol |) means “either”, and parentheses group

So this matches zero or more of a, b, c, w, x, y, z, followed by either
nothing or by 3 or by 1’s followed by 2, followed by 4 and a question mark.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 9 / 23

Regular Expressions

Regular expressions (regexes) are equivalent to regular grammars1, e.g.

Y︷ ︸︸ ︷
[abcw-z]*︸ ︷︷ ︸

X

(1+ 2|3)?

︸ ︷︷ ︸
Z

4\?

is equivalent to

S → Z 4 ?
Z → Y 2 | X 3 | ε
Y → Y 1 | X 1
X → X a | X b | X c | X w | X x | X y | X z | ε

Here, the regex is more compact. Sometimes, the grammar is smaller.

1If you’ve seen backreferences: those are not technically valid in regexes.
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 23

Regular Expressions

Python has a regex engine to find text matching a regex:

>>> import re
>>> m = re.match('.* ([a-z0-9._-]+)@([a-z0-9._-]+)',

'hello cs61a@berkeley.edu cs98-52')
>>> m
<re.Match object; span=(0, 24),

match='hello cs61a@berkeley.edu'>
>>> m.groups()
('cs61a', 'berkeley.edu')

Notice that these could all be handled by re.match:

Substring search (str.find)

Subsequence search (re.match(".*b.*b", "abbc"))

The grep tool (from ed’s g/re/p = global/regex/print) does this for files.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 23

Regular Expressions

Million-dollar question:

How do you find text matching a regex?

Two steps:
1 Parse the regex (pattern) to “understand” its structure
2 Use the regex to parse the actual text (corpus)

It turns out that:
1 Step 1 is theoretically harder, but practically easier.

(This can be done similarly to how you parsed Scheme.)
2 Step 2 is theoretically easier, but practically harder.

This is because we need parsing the corpus to be fast.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 23

Regular Expressions

How do you solve each step?

Both steps are often done using “recursive-descent”—similarly to how your
Scheme parser parsed its input.

Basically: try every possibility recursively.
“Backtrack” on failure to try something else.

Problem: Recursive-descent can take exponential time!
Example (where “a{3}” is shorthand for “aaa”):

>>> re.match("(a?){25}a{25}", "a" * 25)

Can we hope to parse corpora in time linear to their lengths?

Yes, using finite automata.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 13 / 23

Finite Automata

A finite automaton (FA) consists of the following (example below)2:

An input alphabet Σ ({0, 1} here)

A finite set of states S ({s0, s1, s2} here)

An initial state s0 ∈ S (s0 here)

A set of accepting (or final) states F ⊂ S ({s2} here)

A transition function δ : S × Σ→ 2S (the arrows here)

s0 s1 s2

0

0

1

1

1

0

2Note that an FA is not quite the same thing as a finite-state machine (FSM).
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 23

Finite Automata

Notice the transition function δ outputs a subset of states.

In a deterministic finite automaton (DFA), the transition function always
outputs a set with exactly one state (a singleton).

i.e., in a DFA, the next state is determined by the input & current state.
(i.e., every state has exactly 1 arrow leaving it for each possible input.)

In a nondeterministic finite automaton (NFA), the above is not true.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 23

Finite Automata

Finite automata are language recognizers: you feed a string as an input,
and if it accepts the input string, the string is in its language.3

In particular:
=⇒ Finite automata recognize regular languages, and nothing else!

Therefore, we can:
1 Convert regex pattern to FA
2 Feed corpus to FA in linear time!
3 ...
4 Profit!

But how can we do this?

3Pumping lemma: A long-enough input must contain a repeatable substring. (Why?)
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 23

Finite Automata from Regular Expressions

Consider: (a|b)*(1+2|3). Ask: Where in the pattern can we be?

1 s0 = •(a|b)*(1+2|3)
= •(•a|•b)*(1+2|3)
= •(•a|•b)*•(1+2|3)
= •(•a|•b)*•(•1+2|•3)

2 s1 = (a|b)*(•1+•2|3)

3 s2 = (a|b)*(1+2•|3)
= (a|b)*(1+2•|3)•

s2 = (a|b)*(1+2|3•)
= (a|b)*(1+2|3•)•

s2 = (a|b)*(1+2•|3•)••

s0

s1

s2

a

b

1

1 2

3

(Expanding a state to its equivalents is a mathematical closure operation.)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 23

Finite Automata from Regular Expressions

We created a deterministic finite automaton (DFA) from a regex!

It can find regular patterns (substrings, subsequences, etc.) in linear time.

However: there is no such thing as a free lunch.

What is the caveat?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 23

Finite Automata from Regular Expressions

Caveat:

The number of states |S| can be exponential in the size of the pattern m.
(This is sometimes referred to as the size of the state space.)

Why? Because we compute subsets of locations in the pattern, and we
could encounter around 2m subsets for a pattern of length m.

Solution?

DFA minimization: Always merge states that behave identically.
→ We already did this. It often works well.

Boring: Use an NFA instead of a DFA. (Track state items separately.)
→ Guarantees O(m) memory usage, but running time is O(mn).

Clever: Build the DFA lazily as needed by input.
→ Memory usage becomes O(m + n), but running time approaches O(n).

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 23

Conclusion

Automata are extremely powerful! They can do many other cool things:

Levenshtein automata can recognize corpora that are k “edit
distances” (insertions, deletions, or mutations) away from a pattern.

When given a stack, LR automata can parse context-free languages
(like many programming languages) in linear time (CS 164).

Büchi automata, which allow infinite-length input strings, are used for
formal verification of computer programs.

Finite-state machines (very similar) are widely used in digital design:

Used in engineering to prove digital systems work as intended

Used to optimize power consumption, logic circuitry, etc.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 23

Conclusion

This is just the tip of the iceberg for string algorithms (and automata).
Languages, grammars, and automata are also used in computational
linguistics, computational biology/genomics (DNA alignment/matching)...

It is extremely easy to graduate and avoid languages & automata.
But they provide the keys for solving many otherwise difficult problems.
You can see more in EE/CS 144, 149, 151, 164, 172, 176, 219C, 291E...

∼ Related Words of Wisdom ∼

Minimizing the number of states in your design
(e.g. factoring out duplicate data) helps keep designs clean & bug-free.

One reason: single source of truth. If it can’t be wrong, it won’t be.

Kleeneliness is next to Gödeliness.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 23

...Calculus?

Bonus: What language does S describe?

S → S a | ε

Hmm, union and concatenation sure look like addition & multiplication...

S = Sa + ε

Sε = Sa + ε

S(ε− a) = ε

S = ε

ε− a
...wait, what?

Oh, right—Taylor series...
S = ε+ a + a2 + . . .

:-) Please don’t ask...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 23

Conclusion

Thank you!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 23

	Preliminaries
	Motivation
	Background

	Languages
	Formal
	Regular

	Automata
	Finite Automata

	Conclusion
	Calculus
	Conclusion

