
CS 61A Higher Order Functions and Recursion
Fall 2018 Discussion 2: June 26, 2018

1 Higher Order Functions
HOFs in Environment Diagrams
Recall that an environment diagram keeps track of all the variables that

have been defined and the values they are bound to. However, values are

not necessarily only integers and strings. Environment diagrams can model

more complex programs that utilize higher order functions.

def add_num(x):

return lambda y: x + y

add_two = add_num(2)

add_two(3)

Lambdas are represented similiarly to functions in environment diagrams,

but since they lack instrinsic names, the lambda symbol (λ) is used instead.

The parent of any function (including lambdas) is always the frame in which

the function is defined. It is useful to include the parent in environment

diagrams in order to find variables that are not defined in the current frame.

In the previous example, when we call add two (which is really the lambda

function), we need to know what x is in order to compute x + y. Since x is

not in the frame f2, we look at the frame’s parent, which is f1. There, we

find x is bound to 2.

As illustrated above, higher order functions that return a function have their

return value represented with a pointer to the function object.



2 Higher Order Functions and Recursion

A Note on Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. In

the code above, lambda y: x + y is a lambda expression, and can be read

as a function that takes in one parameter y and returns x + y.

A lambda expression by itself evaluates to a function but does not bind it to

a name. Also note that the return expression of this function is not evaluated

until the lambda is called. This is similar to how defining a new function

using a def statement does not execute the functions body until it is later

called.

>>> what = lambda x : x + 5

>>> what

<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or

an operand to a call expression. This is because they are simply one-line

expressions that evaluate to functions.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: y + 1, 10)

11



Higher Order Functions and Recursion 3

Questions
1.1 Draw the environment diagram that results from executing the code below.

1 def curry2(h):

2 def f(x):

3 def g(y):

4 return h(x, y)

5 return g

6 return f

7 make_adder = curry2(lambda x, y: x + y)

8 add_three = make_adder(3)

9 add_four = make_adder(4)

10 five = add_three(2)



4 Higher Order Functions and Recursion

1.2 Write curry2 as a lambda function

1.3 Draw the environment diagram that results from executing the code below.

1 n = 7

2

3 def f(x):

4 n = 8

5 return x + 1

6

7 def g(x):

8 n = 9

9 def h():

10 return x + 1

11 return h

12

13 def f(f, x):

14 return f(x + n)

15

16 f = f(g, n)

17 g = (lambda y: y())(f)



Higher Order Functions and Recursion 5

1.4 The following question is extremely difficult. Something like this would not

appear on the exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram that results from executing the code below.

Note that using the + operator with two strings results in the second string

being appended to the first. For example "C" + "S" concatenates the two

strings into one string "CS"

1 y = "y"

2 h = y

3 def y(y):

4 h = "h"

5 if y == h:

6 return y + "i"

7 y = lambda y: y(h)

8 return lambda h: y(h)

9 y = y(y)(y)



6 Higher Order Functions and Recursion

Writing Higher Order Functions

1.5 Write a function that takes in a function cond and a number n and prints

numbers from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

1.6 Write a function similar to keep_ints like before, but now it takes in a

number n and returns a function that has one parameter cond. The returned

function prints out numbers from 1 to n where calling cond on that number

returns True.

def keep_ints(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(5)(is_even)

2

4

"""



Higher Order Functions and Recursion 7

2 Recursion
def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n-1)

A recursive function is a function that is defined in terms of itself. A good

example is the factorial function. Although we haven’t finished defining

factorial, we are still able to call it since the function body is not evaluated

until the function is called. Note that when n is 0 or 1, we just return 1.

This is known as the base case, and it prevents the function from infinitely

recursing. Now we can compute factorial(2) in terms of factorial(1),

and factorial(3) in terms of factorial(2), and factorial(4) – well, you

get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest

input possible to the function. For example, factorial(0) is 1 by

definition. You can also think of a base case as a stopping condition

for the recursion. If you can’t figure this out right away, move on to

the recursive case and try to figure out the point at which we can’t

reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your

problem, and assume that a recursive call for this new problem will

simply work. This is called the “leap of faith”. For factorial, we

reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember

that we are assuming the recursive call works. With the result of the

recursive call, how can you solve the original problem you were asked?

For factorial, we just multiply (n− 1)! by n.

Note: One way to go understand recursion is to separate out two things: “internal

correctness” and not running forever (known as “halting”).

A recursive function is internally correct if it is always does the right thing assum-

ing that every recursive call does the right thing. For example, the same factorial

function from above but with no base case is internally correct, but does not halt.

A recursive function is correct if and only if it is both internally correct and halts; but

you can check each property separately. The “recursive leap of faith” is temporarily

placing yourself in a mindset where you only check internal correctness.



8 Higher Order Functions and Recursion

Questions
2.1 Write a function that takes two numbers m and n and returns their product.

Assume m and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What

does calling multiply(m, n - 1) do? Do we prefer one over the other?

def multiply(m, n):

"""

>>> multiply(5, 3)

15

"""



Higher Order Functions and Recursion 9

2.2 Write a recursive function that takes in an integer n and prints out a count-

down from n to 1.

First, think about a base case for the countdown function. What is the

simplest input the problem could be given?

After you’ve thought of a base case, think about a recursive call with a

smaller argument that approches the base case. What happens if you call

countdown(n - 1)?

Then, put the base case and the recursive call together, and think about

where a print statement would be needed.

def countdown(n):

"""

>>> countdown(3)

3

2

1

"""

2.3 How can we change countdown to count up instead without modifying a lot

of the code?



10 Higher Order Functions and Recursion

2.4 Write a recursive function that takes a number n and returns the sum of every

other digit, starting from the rightmost digit. Assume n is non-negative.

You might find the operators // and % useful.

def sum_every_other_digit(n):

"""

>>> sum_every_other_digit(7)

7

>>> sum_every_other_digit(30)

0

>>> sum_every_other_digit(228)

10

>>> sum_every_other_digit(123456)

12

>>> sum_every_other_digit(1234567) # 1 + 3 + 5 + 7

16

"""



Higher Order Functions and Recursion 11

2.5 Draw an environment diagram for the following code:

def rec(x, y):

if y > 0:

return x * rec(x, y - 1)

return 1

rec(3, 2)

Bonus question: what does this function do?


	Higher Order Functions
	Recursion

