CS 61A Recursion \& Tree Recursion Fall 2018
 Discussion 3: September 12, 2018

1 More Recursion
 Questions

1.1 In discussion 1, we implemented the function is_prime, which takes in a positive integer and returns whether or not that integer is prime, iteratively. Now, let's implement it recursively! As a reminder, an integer is considered prime if it has exactly two unique factors: 1 and itself.

```
def is_prime(n):
    """
    >>> is_prime(7)
    True
    >>> is_prime(10)
    False
    >>> is_prime(1)
    False
    """
    def prime_helper(___________________):
```

 if

--_-_-_-_-_-_-_-_-_-_-_
else:
\qquad
return \qquad
1.2 Define a function make_fn_repeater which takes in a one-argument function f and an integer x. It should return another function which takes in one argument, another integer. This function returns the result of applying f to x this number of times.

Make sure to use recursion in your solution.

```
def make_func_repeater(f, x):
```

"""
>>> incr_1 = make_func_repeater(lambda x: x + 1, 1)
>>> incr_1(2) \#same as $f(f(x))$
3
>>> incr_1(5)
6
"""
def repeat (\qquad
if \qquad :
return \qquad
else:
return \qquad
return \qquad

2 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is the recursive fibonacci function:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
```

This type of recursion is called tree recursion, because it makes more than one recursive call in its recursive case. If we draw out the recursive calls, we see the recursive calls in the shape of an upside-down tree:

We could, in theory, use loops to write the same procedure. However, problems that are naturally solved using tree recursive procedures are generally difficult to write iteratively. It is sometimes the case that a tree recursive problem also involves iteration: for example, you might use a while loop to add together multiple recursive calls.
As a general rule of thumb, whenever you need to try multiple possibilities at the same time, you should consider using tree recursion.

Questions

 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me. Assume n is positive.Before we start, what's the base case for this question? What is the simplest input?

What do count_stair_ways(n - 1) and count_stair_ways(n - 2) represent?

Use those two recursive calls to write the recursive case:
def count_stair_ways(n):
2.2 Consider a special version of the count_stairways problem, where instead of taking 1 or 2 steps, we are able to take up to and including k steps at a time.

Write a function count_k that figures out the number of paths for this scenario. Assume n and k are positive.

```
def count_k(n, k):
    """
    >>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1
    4
    >>> count_k(4, 4)
    8
    >>> count_k(10, 3)
    274
    >>> count_k(300, 1) # Only one step at a time
    1
    """
```

2.3 Here's a part of the Pascal's triangle:

Column:	0	1	2	3	4	\ldots
Row 0:	1					
Row 1:	1	1				
Row 2:	1	2	1			
Row 3:	1	3	3	1		
Row 4:	1	4	6	4	1	

$$
\cdots
$$

Every number in Pascal's triangle is defined as the sum of the item above it and the item that is directly to the upper left of it, use 0 if the entry is empty. Define the procedure pascal(row, column) which takes a row and a column, and finds the value at that position in the triangle.

```
def pascal(row, column):
```

