
CS 61A Recursion & Tree Recursion
Fall 2018 Discussion 3: September 12, 2018

1 More Recursion
Questions

1.1 In discussion 1, we implemented the function is prime, which takes in a

positive integer and returns whether or not that integer is prime, iteratively.

Now, let’s implement it recursively! As a reminder, an integer is considered

prime if it has exactly two unique factors: 1 and itself.

def is_prime(n):

"""

>>> is_prime(7)

True

>>> is_prime(10)

False

>>> is_prime(1)

False

"""

def prime_helper(____________________):

if ________________________:

________________________

elif ________________________:

________________________

else:

________________________

return __________________________



2 Recursion & Tree Recursion

1.2 Define a function make fn repeater which takes in a one-argument function

f and an integer x. It should return another function which takes in one

argument, another integer. This function returns the result of applying f to

x this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):

"""

>>> incr_1 = make_func_repeater(lambda x: x + 1, 1)

>>> incr_1(2) #same as f(f(x))

3

>>> incr_1(5)

6

"""

def repeat(___________________):

if _______________________:

return __________________

else:

return __________________

return _________________________



Recursion & Tree Recursion 3

2 Tree Recursion
Consider a function that requires more than one recursive call. A simple

example is the recursive fibonacci function:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than

one recursive call in its recursive case. If we draw out the recursive calls, we

see the recursive calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, prob-

lems that are naturally solved using tree recursive procedures are generally

difficult to write iteratively. It is sometimes the case that a tree recursive

problem also involves iteration: for example, you might use a while loop to

add together multiple recursive calls.

As a general rule of thumb, whenever you need to try multiple possibilities

at the same time, you should consider using tree recursion.

Questions
2.1 I want to go up a flight of stairs that has n steps. I can either take 1 or 2

steps each time. How many different ways can I go up this flight of stairs?

Write a function count_stair_ways that solves this problem for me. Assume

n is positive.



4 Recursion & Tree Recursion

Before we start, what’s the base case for this question? What is the simplest

input?

What do count_stair_ways(n - 1) and count_stair_ways(n - 2) repre-

sent?

Use those two recursive calls to write the recursive case:

def count_stair_ways(n):

2.2 Consider a special version of the count_stairways problem, where instead

of taking 1 or 2 steps, we are able to take up to and including k steps at

a time.

Write a function count_k that figures out the number of paths for this sce-

nario. Assume n and k are positive.

def count_k(n, k):

"""

>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1

4

>>> count_k(4, 4)

8

>>> count_k(10, 3)

274

>>> count_k(300, 1) # Only one step at a time

1

"""



Recursion & Tree Recursion 5

2.3 Here’s a part of the Pascal’s triangle:

Column: 0 1 2 3 4 ...

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

...

Every number in Pascal’s triangle is defined as the sum of the item above

it and the item that is directly to the upper left of it, use 0 if the entry is

empty. Define the procedure pascal(row, column) which takes a row and a

column, and finds the value at that position in the triangle.

def pascal(row, column):


	More Recursion
	Tree Recursion

