
CS 61A Trees & Sequences
Fall 2018 Discussion 4: September 19, 2018

1 List Comprehensions
new_lst = []

for <name> in <iter exp>:

if <filter exp>:

new_lst += [<map_exp>]

return new_lst

A list comprehension is a compact way to create a list whose elements are

the results of applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an

equivalent for statement. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a

series of operations to our initial sequence [1, 2, 3, 4, 5]. We only keep

the elements that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For

each retained element, we apply the map expression x*x - 3 before adding

it to the new list that we are creating, resulting in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

Questions
1.1 What would Python display?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

2 Trees & Sequences

2 Trees
7

1

3

2

−4 0

8

6

11

16

17

19

20

In computer science, trees are recursive data structures that are widely used

in various settings. The diagram to the right is an example of a tree.

Notice that the tree branches downward. In computer science, the root of

a tree starts at the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have

multiple branches.

• Child node: A node that has a parent. A child node can only belong

to one parent.

• Root: The top node of the tree. In our example, the node that con-

tains 7 is the root.

• Label: The value at a node. In our example, all of the integers are

values.

• Leaf : A node that has no branches. In our example, the nodes that

contain −4, 0, 6, 17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which

are trees themselves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the

number of edges between the root of the tree to the node. In the

diagram, the node containing 19 has depth 1; the node containing 3

has depth 2. Since there are no edges between the root of the tree and

itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes

containing −4, 0, 6, and 17 are all the “lowest leaves,” and they have

depth 4. Thus, the entire tree has height 4.

In computer science, there are many different types of trees. Some vary in

the number of branches each node has; others vary in the structure of the

tree.

Trees & Sequences 3

Implementation
Constructor

def tree(label, branches=[]):

for branch in branches:

assert is_tree(branch)

return [label] + list(branches)

Selectors

def label(tree):

return tree[0]

def branches(tree):

return tree[1:]

For convenience

def is_leaf(tree):

return not branches(tree)

A tree has both a value for the root node and a sequence of branches, which

are also trees. In our implementation, we represent the branches as a list of

trees. Since a tree is an abstract data type, our choice to use lists is just an

implementation detail.

• The arguments to the constructor tree are the value for the root node

and a list of branches.

• The selectors for these are label and branches.

Note that branches returns a list of trees and not a tree directly. It’s im-

portant to distinguish between working with a tree and working with a list

of trees.

We have also provided a convenience function, is_leaf.

Let’s try to create the tree below.

1

3

4 5 6

2

Example tree construction

t = tree(1,

[tree(3,

[tree(4),

tree(5),

tree(6)]),

tree(2)])

4 Trees & Sequences

Questions
2.1 Write a function that returns the largest number in a tree.

def tree_max(t):

"""Return the maximum label in a tree.

>>> t = tree(4, [tree(2, [tree(1)]), tree(10)])

>>> tree_max(t)

10

"""

2.2 Write a function that returns the height of a tree. Recall that the height of

a tree is the length of the longest path from the root to a leaf.

def height(t):

"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])

>>> height(t)

2

"""

2.3 Write a function that takes in a tree and squares every value. It should

return a new tree. You can assume that every item is a number.

def square_tree(t):

"""Return a tree with the square of every element in t"""

Trees & Sequences 5

2.4 Write a function that takes in a tree and a value x and returns a list con-

taining the nodes along the path required to get from the root of the tree to

a node containing x.

If x is not present in the tree, return None. Assume that the entries of the

tree are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):

"""

>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)])]), tree(15)])

>>> find_path(t, 5)

[2, 7, 6, 5]

>>> find_path(t, 10) # returns None

"""

if _____________________________:

return _____________________________

_____________________________:

path = _____________________________

if _____________________________:

return _____________________________

2.5 Write a function that takes in a tree and a depth k and returns a new tree

that contains only the first k levels of the original tree.

For example, if t is the tree shown in the previous question, then prune(t,

6 Trees & Sequences

2) should return the following tree.

2

7

3 6

15

def prune(t, k):

2.6 We can represent the hailstone sequence as a tree in the figure below, showing

the route different numbers take to reach 1. Remember that a hailstone

sequence starts with a number n, continuing to n/2 if n is even or 3n + 1

if n is odd, ending with 1. Write a function hailstone tree(n, h) which

generates a tree of height h, containing hailstone numbers that will reach n.

Hint: A node of a hailstone tree will always have at least one, and at most

two branches (which are also hailstone trees). Under what conditions do you

add the second branch?

1 2 4 8 16

5 10
3

20

32 64
21

128

hailstone tree(1, 7)

16

5 10
3

20

32 64
21

128

hailstone tree(16, 3)

def hailstone_tree(n, h):

"""Generates a tree of hailstone numbers that will

reach N, with height H.

>>> hailstone_tree(1, 0)

[1]

>>> hailstone_tree(1, 4)

[1, [2, [4, [8, [16]]]]]

>>> hailstone_tree(8, 3)

[8, [16, [32, [64]], [5, [10]]]]

Trees & Sequences 7

"""

	List Comprehensions
	Trees

