
CS 61A Mutation, Nonlocal, and Iterators
Fall 2018 Discussion 5: September 26, 2018

1 Mutation
Let’s imagine you order a mushroom and cheese pizza from La Val’s, and that they

represent your order as a list:

>>> pizza = ['cheese', mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based

on what we know so far, La Val’s would have to build an entirely new list to add

onions:

>>> pizza = ['cheese', mushrooms']

>>> new_pizza = pizza + ['onions'] # creates a new python list

>>> new_pizza

['cheese', mushrooms', 'onions']

>>> pizza # the original list is unmodified

['cheese', 'mushrooms']

This is silly, considering that all La Val’s had to do was add onions on top of pizza

instead of making an entirely new pizza.

We can fix this issue with list mutation. In Python, some objects, such as lists

and dictionaries, are mutable, meaning that their contents or state can be changed

over the course of program execution. Therefore, instead of building a new pizza,

we can just mutate pizza to add some onions!

>>> pizza.append('onions')

>>> pizza

['cheese', 'mushrooms', 'onions']

append is what’s known as a method, or a function that belongs to an object, so

we have to call it using dot notation. Don’t worry too much about the details of

methods; we will talk more about them later on in the course. For now, here’s a

list of useful list mutation methods:

1. append(el): Adds el to the end of the list

2. extend(lst): Extends the list by concatenating it with lst

3. insert(i, el): Insert el at index i (does not replace element but adds a

new one)

4. remove(el): Removes the first occurrence of el in list, otherwise errors

5. pop(i): Removes and returns the element at index i

We can also use the familiar indexing operator with an assignment statement to

change an existing element in a list. For example, let’s say you want to replace



2 Mutation, Nonlocal, and Iterators

mushrooms on your pizza with tomatoes. We can index into the list at index 1 and

reassign it to ’tomatoes’ like so:

>>> pizza[1] = 'tomatoes'

>>> pizza

['cheese', 'tomatoes', 'onions']

Although lists and dictionaries are mutable, many other objects, such as numeric

types, tuples, and strings, are immutable, meaning they cannot be changed once

they are created.

Questions
1.1 What would Python display? In addition to giving the output, draw the box and

pointer diagrams for each list to the right.

>>> lst1 = [1, 2, 3]

>>> lst2 = lst1

>>> lst1 is lst2

>>> lst2.extend([5, 6])

>>> lst1[4]

>>> lst1.append([-1, 0, 1])

>>> -1 in lst2

>>> lst2[5]

>>> lst3 = lst2[:]

>>> lst3.insert(3, lst2.pop(3))

>>> len(lst1)

>>> lst1[4] is lst3[6]

>>> lst3[lst2[4][1]]

>>> lst1[:3] is lst2[:3]

>>> lst1[:3] == lst3[:3]



Mutation, Nonlocal, and Iterators 3

1.2 Write a function that takes in a value x, a value el, and a list and adds as many

el’s to the end of the list as there are x’s. Make sure to modify the original

list using list mutation techniques.

def add_this_many(x, el, lst):

""" Adds el to the end of lst the number of times x occurs

in lst.

>>> lst = [1, 2, 4, 2, 1]

>>> add_this_many(1, 5, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5]

>>> add_this_many(2, 2, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5, 2, 2]

"""



4 Mutation, Nonlocal, and Iterators

2 Nonlocal
Until now, you’ve been able to access names in parent frames, but you have not

been able to modify them. The nonlocal keyword can be used to modify a binding

in a parent frame. For example, consider stepper, which uses nonlocal to modify

num:

def stepper(num):

def step():

nonlocal num # declares num as a nonlocal name

num = num + 1 # modifies num in the stepper frame

return num

return step

>>> step1 = stepper(10)

>>> step1() # Modifies and returns num

11

>>> step1() # num is maintained across separate calls to step

12

>>> step2 = stepper(10) # Each returned step function keeps its own state

>>> step2()

11

As illustrated in this example, nonlocal is useful for maintaining state across dif-

ferent calls to the same function.

However, there are two important caveats with nonlocal names:

• Global names cannot be modified using the nonlocal keyword.

• Names in the current frame cannot be overridden using the nonlocal key-

word. This means we cannot have both a local and nonlocal binding with the

same name in a single frame.

Because nonlocal lets you modify bindings in parent frames, we call functions that

use it mutable functions.



Mutation, Nonlocal, and Iterators 5

Questions
2.1 Draw the environment diagram for the following code.

def stepper(num):

def step():

nonlocal num

num = num + 1

return num

return step

s = stepper(3)

s()

s()



6 Mutation, Nonlocal, and Iterators

2.2 The bathtub below simulates an epic battle between Finn and Kylo Ren over a

populace of rubber duckies. Fill in the body of ducky so that all doctests pass.

def bathtub(n):

"""

>>> annihilator = bathtub(500) # the force awakens...

>>> kylo_ren = annihilator(10)

>>> kylo_ren()

490 rubber duckies left

>>> rey = annihilator(-20)

>>> rey()

510 rubber duckies left

>>> kylo_ren()

500 rubber duckies left

"""

def ducky_annihilator(rate):

def ducky():

return ducky

return ducky_annihilator



Mutation, Nonlocal, and Iterators 7

3 Iterators and Generators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator.

counts = [1, 2, 3]

for i in counts:

print(i)

items = iter(counts)

while True:

try:

i = next(items)

print(i)

except StopIteration:

break #Exit the while loop

One important application of iterables and iterators is the for loop. We’ve seen

how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f returns True.



8 Mutation, Nonlocal, and Iterators

Questions
3.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

>>> lst_iter = iter(lst)

>>> next(lst_iter)

>>> next(lst_iter)

>>> next(iter(lst))

>>> [x for x in lst_iter]

Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns an iterator. To the right, you can see a function that

returns an iterator over the natural numbers. The yield statement is similar to

a return statement. However, while a return statement closes the current frame

after the function exits, a yield statement causes the frame to be saved until the

next time next is called, which allows the generator to automatically keep track of

the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.

>>> square = lambda x: x*x

>>> def many_squares(s):

... for x in s:

... yield square(x)

... yield from map(square, s)

...

>>> list(many_squares([1, 2, 3]))

[1, 4, 9, 1, 4, 9]

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates different ways of computing the same result.



Mutation, Nonlocal, and Iterators 9

Questions
3.2 What would Python display? If a StopIteration Exception occurs, write StopIteration,

or if another error occurs, write Error.

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

... else:

... yield x

... yield from weird_gen(x - 1)

>>> next(weird_gen(2))

>>> list(weird_gen(3))

>>> def greeter(x):

... while x % 2 != 0:

... print('hello!')

... yield x

... print('goodbye!')

>>> greeter(5)

>>> gen = greeter(5)

>>> next(gen)

>>> next(gen)

3.3 Write a generator function gen_all_items that takes a list of iterators and yields

items from all of them in order.

def gen_all_items(lst):

"""

>>> nums = [[1, 2], [3, 4], [[5, 6]]]

>>> num_iters = [iter(l) for l in nums]

>>> list(gen_all_items(num_iters))

[1, 2, 3, 4, [5, 6]]

"""


	Mutation
	Nonlocal
	Iterators and Generators

