
CS 61A Macros and Streams
Fall 2018 Discussion 10: November 7, 2018

1 Macros
So far we’ve been able to define our own procedures in Scheme using the define spe-

cial form. When we call these procedures, we have to follow the rules for evaluating

call expressions, which involve evaluating all the operands.

We know that special form expressions do not follow the evaluation rules of call

expressions. Instead, each special form has its own rules of evaluation, which may

include not evaluating all the operands. Wouldn’t it be cool if we could define

our own special forms where we decide which operands are evaluated? Consider

the following example where we attempt to write a function that evaluates a given

expression twice:

scm> (define (twice f) (begin f f))

twice

scm> (twice (print 'woof))

woof

Since twice is a regular procedure, a call to twice will follow the same rules of

evaluation as regular call expressions; first we evaluate the operator and then we

evaluate the operands. That means that woof was printed when we evaluated the

operand (print ’woof). Inside the body of twice, the name f is bound to the

value undefined, so the expression (begin f f) does nothing at all!

The problem here is clear: we need to prevent the given expression from evaluating

until we’re inside the body of the procedure. This is where the define-macro special

form, which has identical syntax to the regular define form, comes in:

scm> (define-macro (twice f) (list 'begin f f))

twice

define-macro allows us to define what’s known as a macro, which is simply a way

for us to combine unevaluated input expressions together into another expression.

When we call macros, the operands are not evaluated, but rather are treated as

Scheme data. This means that any operands that are call expressions or special

form expression are treated like lists.

If we call (twice (print ’woof)), f will actually be bound to the list (print

’woof) instead of the value undefined. Inside the body of define-macro, we can

insert these expressions into a larger Scheme expression. In our case, we would want

a begin expression that looks like the following:

(begin (print 'woof) (print 'woof))

As Scheme data, this expression is really just a list containing three elements: begin

and (print ’woof) twice, which is exactly what (list ’begin f f) returns. Now,



2 Macros and Streams

when we call twice, this list is evaluated as an expression and (print ’woof) is

evaluated twice.

scm> (twice (print 'woof))

woof

woof

To recap, macros are called similarly to regular procedures, but the rules for eval-

uating them are different. We evaluated lambda procedures in the following way:

1. Evaluate operator

2. Evaluate operands

3. Apply operator to operands, evaluating the body of the procedure

However, the rules for evaluating calls to macro procedures are:

1. Evaluate operator

2. Apply operator to unevaluated operands

3. Evaluate the expression returned by the macro in the frame it was called in.

Quasiquoting
scm> (define a 1)

a

scm> '(cons a nil)

(cons a nil)

Recall that the quote special form prevents the Scheme interpreter from executing

a following expression. We saw that this helps us create complex lists more easily

than repeatedly calling cons or trying to get the structure right with list. It seems

like this form would come in handy if we are trying to construct complex Scheme

expressions with many nested lists.

Consider that we rewrite the twice macro as follows:

(define-macro (twice f)

'(begin f f))

This seems like it would have the same effect, but since the quote form prevents

any evaluation, the resulting expression we create would actually be (begin f f),

which is not what we want.

The quasiquote allows us to construct literal lists in a similar way as quote, but

also lets us specify if any sub-expression within the list should be evaluated.

scm> `(cons a nil)

(cons a nil)

scm> `(cons ,a nil)

(cons 1 nil)

At first glance, the quasiquote (which can be invoked with the backtick ` or the

quasiquote special form) behaves exactly the same as ’ or quote. However, using

quasiquotes gives you the ability to unquote (which can be invoked with the comma

, or the unquote special form). This removes an expression from the quoted context,

evaluates it, and places it back in.

By combining quasiquotes and unquoting, we can often save ourselves a lot of trouble

when building macro expressions.

Here is how we could use quasiquoting to rewrite our previous example:

(define-macro (twice f)

`(begin ,f ,f))



Macros and Streams 3

Questions
1.1 Write a macro that takes an expression and returns a parameter-less lamba proce-

dure with the expression as its body

(define-macro (make-lambda expr)

scm> (make-lambda (print 'hi))

(lambda () (print (quote hi)))

scm> (make-lambda (/ 1 0))

(lambda () (/ 1 0))

scm> (define print-3 (make-lambda (print 3)))

print-3

scm> (print-3)

3

1.2 Write a macro that takes in two expressions and or’s them together (applying short-

circuiting rules). However, do this without using the or special form. You may also

assume the name v1 doesn’t appear anywhere outside of our macro. Fill in the

implementation below.

(define-macro (or-macro expr1 expr2)

`(let ((v1 _____________________________________________________________________________))

(if ________________________________________________________________________________

___________________________________________________________________________________)))

scm> (or-macro (print 'bork) (/ 1 0))

bork

scm> (or-macro (= 1 0) (+ 1 2))

3



4 Macros and Streams

2 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because cons is a regular procedure and both its operands must be evaluted before

the pair is constructed, we cannot create an infinite sequence of integers using a

Scheme list.

Instead, our Scheme interpreter supports streams, which are lazy Scheme lists. The

first element is represented explicitly, but the rest of the stream’s elements are

computed only when needed. Computing a value only when it’s needed is also

known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (cdr nat)

#[promise (not forced)]

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2

We use the special form cons-stream to create a stream:

(cons-stream <operand1> <operand2>)

cons-stream is a special form because the second operand is not evaluated when

evaluating the expression. To evaluate this expression, Scheme does the following:

1. Evaluate the first operand.

2. Construct a promise containing the second operand.

3. Return a pair containing the value of the first operand and the promise.

To actually get the rest of the stream, we must call cdr-stream on it to force

the promise to be evaluated. Note that this argument is only evaluated once and

is then stored in the promise; subsequent calls to cdr-stream returns the value

without recomputing it. This allows us to efficiently work with infinite streams like



Macros and Streams 5

the naturals example above. We can see this in action by using a non-pure function

to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Here, the expression compute-rest 1 is only evaluated the first time cons-stream

is called, so the symbol evaluating! is only printed the first time.

Streams are very similar to Scheme lists in that they are also recursive structures.

Just like the cdr of a Scheme list is either another Scheme list or nil, the cdr-stream

of a stream is either a stream or nil. The difference is that whereas both arguments

to cons are evaluated upon calling cons, the second argument to cons-stream isn’t

evaluated until the first time that cdr-stream is called.

Here’s a summary of what we just went over:

• nil is the empty stream

• cons-stream constructs a stream containing the value of the first operand and

a promise to evaluate the second operand

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream



6 Macros and Streams

Questions
2.1 What would Scheme display?

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums

scm> nums

scm> (cdr nums)

scm> (cdr-stream nums)

scm> nums

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (cdr-stream (cdr-stream nums))

scm> (has-even? nums)

2.2 Write a function range-stream which takes a start and end, and returns a stream

that represents the integers between start and end - 1 (inclusive).

(define (range-stream start end)

(if (___________________________________________________________________________________)

nil

(cons-stream _________________________________________________________________________)))

scm> (define s (range-stream 1 5))

s

scm> (car (cdr-stream s))

2



Macros and Streams 7

2.3 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (define nat (naturals 0)) ; See naturals procedure on page 1

nat

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)

2.4 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

(Continued on next page)



8 Macros and Streams

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. Write exp, which returns a stream where the nth term represents the degree-n

polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333 7 7.266666667)



Macros and Streams 9

Extra questions
2.1 Write a macro that takes an expression and a number n and repeats the expression

n times. For example, (repeat-n expr 2) should behave the same as (twice expr).

Note that it’s possible to pass in a combination as the second argument (e.g. (+ 1

2)) as long as it evaluates to a number. Be sure that you evaluate this expression

in your macro so that you don’t treat it as a list.

Complete the implementation below, making use of the replicate function from

Discussion 7.

(define (replicate x n)

(if (= n 0) nil

(cons x (replicate x (- n 1)))))

(define-macro (repeat-n expr n)

scm> (repeat-n (print '(resistance is futile)) 3)

(resistance is futile)

(resistance is futile)

(resistance is futile)

scm> (repeat-n (print (+ 3 3)) (+ 1 1)) ; Pass a call expression in as n

6

6

2.2 Write a macro that takes in a call expression and strips out every other argument.

The first argument is kept, the second is removed, and so on. You may find it

helpful to write a helper function.

(define-macro (prune-expr expr)

scm> (prune-expr (+ 10))

10

scm> (prune-expr (+ 10 100))

10

scm> (prune-expr (+ 10 100 1000))

1010

scm> (prune-expr (prune-expr (+ 10 100) 'garbage))

10



10 Macros and Streams

2.3 Earlier in the discussion, we saw how to write a macro that creates a lambda function

given an expression. While creating a parameter-less function might not seem that

useful at first, it can be helpful in many cases when we don’t want to immediately

evaluate an expression.

Using the make-lambda macro you defined earlier, define make-stream, a macro

which returns a pair of elements, where the second element is not evaluated until

cdr-stream is called on it. Also define the procedure cdr-stream, which takes in

a stream returned by make-stream and returns the result of evaluating the second

element in the stream pair.

Unlike the streams we’ve seen in lecture and earlier in discussion, if you repeat-

edly call cdr-stream on a stream returned by make-stream, you may evaluate an

expression multiple times.

(define-macro (make-stream first second)

(define (cdr-stream stream)

scm> (define a (make-stream (print 1) (make-stream (print 2) nil))))

1

a

scm> (define b (cdr-stream a))

2

b

scm> (cdr-stream b)

()


	Macros
	Streams

