
CS 61A Final Review
Fall 2018 Discussion 12: November 28, 2018

1 Mutation
1.1 For each row below, fill in the blanks in the output displayed by the interactive

Python interpreter when the expression is evaluated. Expressions are evaluated in

order, and expressions may affect later expressions.

>>> cats = [1, 2]

>>> dogs = [cats, cats.append(23), list(cats)]

>>> cats

>>> dogs[1] = list(dogs)

>>> dogs[1]

>>> dogs[0].append(2)

>>> cats

>>> cats[1::2]

>>> cats[:3]

>>> dogs[2].extend([list(cats).pop(0), 3])

>>> dogs[3]

>>> dogs



2 Final Review

2 Recursion
2.1 Implement a function to solve the subset sum problem: you are given a list of

integers and a number k. Is there a subset of the list that adds up to k?

def subset_sum(lst, k):

"""

>>> subset_sum([], 0)

True

>>> subset_sum([], 4)

False

>>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5

True

>>> subset_sum([1, 9, 5, 7, 3], 2)

False

>>> subset_sum([1, 1, 5, -1], 3)

False

"""

if ______________________________________________________________________________:

return True

elif ____________________________________________________________________________:

return False

else:

return ______________________________________________________________________



Final Review 3

3 Trees
3.1 Implement long paths, which returns a list of all paths in a tree with length at least

n. A path in a tree is a linked list of node values that starts with the root and ends

at a leaf. Each subsequent element must be from a child of the previous value’s

node. The length of a path is the number of edges in the path (i.e. one less than

the number of nodes in the path). Paths are listed in order from left to right. See

the doctests for some examples.

def long_paths(tree, n):

"""Return a list of all paths in tree with length at least n.

>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])

>>> left = Tree(1, [Tree(2), t])

>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])

>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])

>>> whole = Tree(0, [left, Tree(13), mid, right])

>>> for path in long_paths(whole, 2):

... print(path)

...

<0 1 2>

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 6 9>

<0 11 12 13 14>

>>> for path in long_paths(whole, 3):

... print(path)

...

<0 1 3 4>

<0 1 3 4>

<0 1 3 5>

<0 6 7 8>

<0 11 12 13 14>

>>> long_paths(whole, 4)

[Link(0, Link(11, Link(12, Link(13, Link(14)))))]

"""



4 Final Review

4 Streams
4.1 Write a function merge that takes 2 sorted streams s1 and s2, and returns a new

sorted stream which contains all the elements from s1 and s2.

Assume that both s1 and s2 have infinite length.

(define (merge s1 s2)

(if _________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________))

4.2 (Adapted from Fall 2014) Implement cycle which returns a stream repeating the

digits 1, 3, 0, 2, and 4, forever. Write cons-stream only once in your solution!

Hint: (3+2) % 5 == 0.

(define (cycle start)

______________________________________________________________________________)



Final Review 5

5 Generators
5.1 Implement accumulate, which takes in an iterable and a function f and yields

each accumulated value from applying f to the running total and the next element.

from operator import add, mul

def accumulate(iterable, f):

"""

>>> list(accumulate([1, 2, 3, 4, 5], add))

[1, 3, 6, 10, 15]

>>> list(accumulate([1, 2, 3, 4, 5], mul))

[1, 2, 6, 24, 120]

"""

it = iter(iterable)

______________________________________________________________________________

______________________________________________________________________________

for __________________________________________________________________________:

__________________________________________________________________________

__________________________________________________________________________



6 Final Review

5.2 Write a generator function that yields functions that are repeated applications of

a one-argument function f. The first function yielded should apply f 0 times (the

identity function), the second function yielded should apply f once, etc.

def repeated(f):

"""

>>> double = lambda x: 2 * x

>>> funcs = repeated(double)

>>> identity = next(funcs)

>>> double = next(funcs)

>>> quad = next(funcs)

>>> oct = next(funcs)

>>> quad(1)

4

>>> oct(1)

8

>>> [g(1) for _, g in

... zip(range(5), repeated(lambda x: 2 * x))]

[1, 2, 4, 8, 16]

"""

g = ________________________________________________________________________

while True:

________________________________________________________________________

________________________________________________________________________

5.3 Ben Bitdiddle proposes the following alternate solution. Does it work?

def ben_repeated(f):

g = lambda x: x

while True:

yield g

g = lambda x: f(g(x))



Final Review 7

6 SQL
6.1 You’re starting a new job at an animal shelter, and you’ve been tasked with keeping

track of all the cats that are up for adoption!

We’ll start with an empty table:

CREATE TABLE cats(name, weight DEFAULT 1, notes DEFAULT "meow");

(a) What would SQL display?

sqlite> INSERT INTO cats(name) VALUES ("Tom"), ("Whiskers");

sqlite> SELECT * FROM cats;

sqlite> INSERT INTO cats VALUES

...> ("Mittens", 2, "Actually likes shoes"),

...> ("Rascal", 4, "Prefers to associate with dogs"),

...> ("Magic", 2, "Expert at card games");

sqlite> SELECT * FROM cats ORDER BY weight, name;

sqlite> UPDATE cats SET notes = "A cat" WHERE notes = "meow";

sqlite> SELECT name FROM cats WHERE notes = "A cat";

(b) Cats of different weights require different quantities of food. We have the

following table:

CREATE TABLE food AS

SELECT 1 AS cat_weight, 0.5 AS amount UNION

SELECT 2 , 2.5 UNION

SELECT 3 , 4.0 UNION

SELECT 4 , 4.5;

Write a query that calculates the total amount of food required to feed all the

cats (this should work for any table of cats, not just the one we created above).

In our example, we have two cats of weight 1, two cats of weight 2, and one

cat of weight 4. The total food required is 2 × 0.5 + 2 × 2.5 + 1 × 4.5 = 10.5.

SELECT _________________________________________________________________________

FROM _________________________________________________________________________

WHERE ________________________________________________________________________;



8 Final Review

7 Macros
7.1 Write the let special form as a macro called let-macro. Recall that let takes in

a list of bindings and a body expression. It creates a temporary frame containing

the given bindings, and returns the result of evaluating the body in this temporary

frame. Do not use the let special form in your solution.

You may use the provided cadr procedure in your solution.

Hint: The built-in map procedure takes in a one-argument function and a list and

returns the result of mapping the function to every element in the list.

(define-macro (let-macro bindings body)

)

(define (cadr lst) (car (cdr lst)))

scm> (define x 3)

x

scm> (let-macro ((x 1) (y 2)) (+ x y))

3

scm> (let-macro ((x 2) (y x)) (* x y))

6

7.2 Write a macro called zero-cond that takes in a list of clauses, where each clause

is a two-element list containing two expressions, a predicate and a corresponding

result expression. All predicates evaluate to a number. The macro should evaluate

each predicate and return the value of the expression corresponding to the first true

predicate, treating 0 as a false value.

scm> (zero-cond

((0 'result1)

((- 1 1) 'result2)

((* 1 1) 'result3)

(2 'result4)))

result3

(define-macro (zero-cond clauses)

(cons 'cond

(map ______________________________________________________________________

________________________________________________________________________

________________________________________________________________________)))


	Mutation
	Recursion
	Trees
	Streams
	Generators
	SQL
	Macros

