CS 61A

 Final Review

 Final Review}

Fall 2018
Discussion 12: November 28, 2018

1 Mutation

1.1 For each row below, fill in the blanks in the output displayed by the interactive Python interpreter when the expression is evaluated. Expressions are evaluated in order, and expressions may affect later expressions.

```
>>> cats = [1, 2]
>>> dogs = [cats, cats.append(23), list(cats)]
>>> cats
```

>>> dogs[1] = list(dogs)
>>> dogs[1]
>>> dogs[0].append(2)
>>> cats
>>> cats[1::2]
>>> cats[:3]
>>> dogs[2].extend([list(cats).pop(0), 3])
>>> dogs[3]

2 Recursion

2.1 Implement a function to solve the subset sum problem: you are given a list of integers and a number k. Is there a subset of the list that adds up to k ?

```
def subset_sum(lst, k):
    """
    >>> subset_sum([], 0)
    True
    >>> subset_sum([], 4)
    False
    >>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5
    True
    >>> subset_sum([1, 9, 5, 7, 3], 2)
    False
    >>> subset_sum([1, 1, 5, -1], 3)
    False
    """
```

\qquad
return True
elif
\qquad _:
return False
else:

3 Trees

3.1 Implement long_paths, which returns a list of all paths in a tree with length at least n. A path in a tree is a linked list of node values that starts with the root and ends at a leaf. Each subsequent element must be from a child of the previous value's node. The length of a path is the number of edges in the path (i.e. one less than the number of nodes in the path). Paths are listed in order from left to right. See the doctests for some examples.
def long_paths(tree, n):
"""Return a list of all paths in tree with length at least n .
>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])
>>> left = Tree(1, [Tree(2), t])
>>> mid $=\operatorname{Tree}(6,[\operatorname{Tree}(7,[\operatorname{Tree}(8)]), \operatorname{Tree}(9)])$
>>> right $=\operatorname{Tree}(11,[\operatorname{Tree}(12,[\operatorname{Tree}(13,[\operatorname{Tree}(14)])])])$
>>> whole $=$ Tree(0, [left, Tree(13), mid, right])
>>> for path in long_paths(whole, 2):
... print(path)
...
<0 1 2>
$<0134>$
$<0134>$
<0 1 3 5>
<0678>
<0 6 9>
<0 111213 14>
>>> for path in long_paths(whole, 3):
... print(path)
...
<0 13 4>
<013 4>
<013 5>
$<0678>$
<0 $111121314>$
>>> long_paths(whole, 4)
[Link(0, Link(11, Link(12, Link(13, Link(14)))))]
"" "

4 Final Review

4 Streams

4.1 Write a function merge that takes 2 sorted streams s1 and s2, and returns a new sorted stream which contains all the elements from s1 and s2.
Assume that both s1 and s2 have infinite length.
(define (merge s1 s2)
(if \qquad
\qquad
\qquad
4.2 (Adapted from Fall 2014) Implement cycle which returns a stream repeating the digits $1,3,0,2$, and 4 , forever. Write cons-stream only once in your solution! Hint: (3+2) \% $5==0$.
(define (cycle start)

5 Generators

5.1 Implement accumulate, which takes in an iterable and a function f and yields each accumulated value from applying f to the running total and the next element.

```
from operator import add, mul
def accumulate(iterable, f):
    """
    >>> list(accumulate([1, 2, 3, 4, 5], add))
    [1, 3, 6, 10, 15]
    >>> list(accumulate([1, 2, 3, 4, 5], mul))
    [1, 2, 6, 24, 120]
    """
    it = iter(iterable)
```

for \qquad :
\qquad
\qquad

6 Final Review
5.2 Write a generator function that yields functions that are repeated applications of a one-argument function f. The first function yielded should apply f 0 times (the identity function), the second function yielded should apply f once, etc.

```
def repeated(f):
```

 """
 >>> double = lambda x: 2 * x
 >>> funcs = repeated(double)
 >>> identity \(=\) next(funcs)
 >>> double = next(funcs)
 >>> quad = next(funcs)
 >>> oct = next(funcs)
 >>> quad(1)
 4
 >>> oct(1)
 8
 >> [g(1) for _, g in
 ... zip(range(5), repeated(lambda x: 2 * x))]
 [1, 2, 4, 8, 16]
 """
 \(g=\)
 \qquad
while True:
\qquad
\qquad
5.3 Ben Bitdiddle proposes the following alternate solution. Does it work?

```
def ben_repeated(f):
    g = lambda x: x
    while True:
        yield g
        g = lambda x: f(g(x))
```


6 SQL

6.1 You're starting a new job at an animal shelter, and you've been tasked with keeping track of all the cats that are up for adoption!

We'll start with an empty table:
CREATE TABLE cats(name, weight DEFAULT 1, notes DEFAULT "meow");
(a) What would SQL display?

```
sqlite> INSERT INTO cats(name) VALUES ("Tom"), ("Whiskers");
sqlite> SELECT * FROM cats;
```

sqlite> INSERT INTO cats VALUES
...> ("Mittens", 2, "Actually likes shoes"),
...> ("Rascal", 4, "Prefers to associate with dogs"),
...> ("Magic", 2, "Expert at card games");
sqlite> SELECT * FROM cats ORDER BY weight, name;

```
sqlite> UPDATE cats SET notes = "A cat" WHERE notes = "meow";
sqlite> SELECT name FROM cats WHERE notes = "A cat";
```

(b) Cats of different weights require different quantities of food. We have the following table:

CREATE TABLE food AS

| SELECT 1 AS cat_weight, | 0.5 AS amount UNION | |
| :--- | :--- | :--- | :--- |
| SELECT 2 | , 2.5 | UNION |
| SELECT 3 | , 4.0 | UNION |
| SELECT 4 | , $4.5 ;$ | |

Write a query that calculates the total amount of food required to feed all the cats (this should work for any table of cats, not just the one we created above). In our example, we have two cats of weight 1 , two cats of weight 2 , and one cat of weight 4 . The total food required is $2 \times 0.5+2 \times 2.5+1 \times 4.5=10.5$.

SELECT

\qquad

FROM \qquad

WHERE \qquad _;

7 Macros

7.1 Write the let special form as a macro called let-macro. Recall that let takes in a list of bindings and a body expression. It creates a temporary frame containing the given bindings, and returns the result of evaluating the body in this temporary frame. Do not use the let special form in your solution.

You may use the provided cadr procedure in your solution.
Hint: The built-in map procedure takes in a one-argument function and a list and returns the result of mapping the function to every element in the list.

```
(define-macro (let-macro bindings body)
```

)
(define (cadr lst) (car (cdr lst)))
scm> (define $\times 3$)
x
scm> (let-macro ((x 1) (y 2)) (+ x y))
3

6
7.2 Write a macro called zero-cond that takes in a list of clauses, where each clause is a two-element list containing two expressions, a predicate and a corresponding result expression. All predicates evaluate to a number. The macro should evaluate each predicate and return the value of the expression corresponding to the first true predicate, treating 0 as a false value.

```
scm> (zero-cond
    ((0 'result1)
        ((- 1 1) 'result2)
        ((* 1 1) 'result3)
        (2 'result4)))
result3
(define-macro (zero-cond clauses)
    (cons 'cond
```

 (map