
CS 61A Final Review
Fall 2017 December 4, 2017

Instructions

Form a small group. Start on the first problem. Check off with a helper or discuss

your solution process with another group once everyone understands how to solve

the first problem and then repeat for the second problem . . .

You may not move to the next problem until you check off or discuss with another

group and everyone understands why the solution is what it is. You may use any

course resources at your disposal: the purpose of this review session is to have

everyone learning together as a group.

2 Final Review

1 Scheme
1.1 What would Scheme display?

(a) > '(1 2 3)

(1 2 3)

(b) > '(1 . (2 . (3 . ())))

(1 2 3)

(c) > '(((1 . 2) . 3) 4 . (5 . 6))

(((1 . 2) . 3) 4 5 . 6)

(d) > (cons 1 2)

(1 . 2)

(e) > (cons 2 '())

(2)

(f) > (cons 1 (cons 2 '()))

(1 2)

(g) > (cons 1 (cons 2 3))

(1 2 . 3)

(h) > (cons (cons (car '(1 2 3))

(list 2 3 4))

(cons 2 3))

((1 2 3 4) 2 . 3)

(i) > (car (cdr (car '((1 2) 3 (4 5)))))

2

(j) > (cddr '((1 2) 3 (4 5)))

((4 5))

Final Review 3

1.2 Define sixty-ones. Return the number of times that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

(define (sixty-ones lst)

(cond ((or (null? lst) (null? (cdr lst))) 0)

((and (= 6 (car lst)) (= 1 (cadr lst))) (+ 1 (sixty-ones (cddr lst))))

(else (sixty-ones (cdr lst)))))

1.3 Identify the bug(s) in this program.

> (sum-every-other '(1 2 3))

4

> (sum-every-other '())

0

> (sum-every-other '(1 2 3 4))

4

> (sum-every-other '(1 2 3 4 5))

9

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst))))))

• The base case should return 0, not '().

• (cdr lst) is a list, so it doesn’t make sense to add it to something. Instead,

use (car lst), which will give us a number.

• Using caar (first of the first) is incorrect because the first is a number and it

doesn’t make sense to get the first of a number. Instead, we should use cddr

(rest of the rest) to skip forward two elements. However, the cdr could be

'(), so we need to add a case to our cond to take care of this.

(define (sum-every-other lst)

(cond ((null? lst) 0)

((null? (cdr lst)) (car lst))

(else (+ (car lst)

(sum-every-other (cddr lst))))))

4 Final Review

1.4 (a) Implement add-to-all.

> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

(define (add-to-all item lst)

(if (null? lst) lst

(cons (cons item (car lst))

(add-to-all item (cdr lst)))))

(b) Rewrite add-to-all tail-recursively.

(define (add-to-all item lst)

(define (helper item lst added)

(if (null? lst) added

(helper item (cdr lst) (append added (list (cons item (car lst)))))))

(helper item lst '()))

1.5 Define sublists. Hint: use add-to-all.

> (sublists '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

(define (sublists lst)

(if (null? lst) '(())

(let ((recur (sublists (cdr lst))))

(append recur (add-to-all (car lst) recur)))))

1.6 (a) Define reverse. Hint: use append.

> (reverse '(1 2 3))

(3 2 1)

(define (reverse lst)

(if (null? lst) lst

(append (reverse (cdr lst)) (list (car lst)))))

(b) Define reverse tail-recursively. Hint: use a helper function and cons.

(define (reverse lst)

(define (helper lst reversed)

(if (null? lst) reversed

(helper (cdr lst) (cons (car lst) reversed))))

(helper lst '()))

Final Review 5

2 Interpreters
2.1 Circle the number of calls to scheme_eval and scheme_apply for the code below.

(a) scm> (+ 1 2)

3

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

4 scheme_eval, 1 scheme_apply.

(b) scm> (if 1 (+ 2 3) (/ 1 0))

5

scheme_eval 1 3 4 6

scheme_apply 1 2 3 4

6 scheme_eval, 1 scheme_apply.

(c) scm> (or #f (and (+ 1 2) 'apple) (- 5 2))

apple

scheme_eval 6 8 9 10

scheme_apply 1 2 3 4

8 scheme_eval, 1 scheme_apply.

(d) scm> (define (add x y) (+ x y))

add

scm> (add (- 5 3) (or 0 2))

2

scheme_eval 12 13 14 15

scheme_apply 1 2 3 4

13 scheme_eval, 3 scheme_apply.

6 Final Review

2.2 Identify the number of calls to scheme_eval and scheme_apply.

(a) scm> (define pi 3.14)

pi

scm> (define (hack x)

(cond

((= x pi) pwned)

((< x 0) (hack pi))

(else (hack (- x 1)))))

hack

3 scheme_eval, 0 scheme_apply

(b) scm> (hack 3.14)

pwned

9 scheme_eval, 2 scheme_apply

(c) scm> ((lambda (x) (hack x)) 0)

pwned

39 scheme_eval, 10 scheme_apply

Final Review 7

3 Streams
3.1 Implement merge, which takes two streams s1 and s2 whose elements are ordered.

merge returns a stream that contains elements from s1 and s2 in sorted order, elim-

inating repetition. You may assume s0 and s1 themselves do not contain repeats.

s1 and s2 may or may not be infinite streams.

(define (merge s0 s1)

(cond ((null? s0) s1)

((null? s1) s0)

((= (car s0) (car s1))

(cons-stream (car s0) (merge (cdr-stream s0) (cdr-stream s1))))

((< (car s0) (car s1))

(cons-stream (car s0) (merge (cdr-stream s0) s1)))

(else

(cons-stream (car s1) (merge s0 (cdr-stream s1))))

)

)

3.2 A famous problem, first raised by Richard Hamming, is to enumerate, in ascending

order with no repetitions, all positive integers with no prime factors other than 2,

3, or 5. These are called regular numbers. One obvious way to do this is to simply

test each integer in turn to see whether it has any factors other than 2, 3, and 5.

But this is very inefficient, since, as the integers get larger, fewer and fewer of them

fit the requirement.

As an alternative, we can write a function that returns an infinite stream of such

numbers. Let us call the stream of numbers s and notice the following facts about

it.

• s begins with 1.

• The elements of (scale-stream s 2) are also elements of s.

• The same is true for (scale-stream s 3) and (scale− streams5).

• These are all of the elements of s.

Now all we have to do is combine elements from these sources. Use the merge

function you defined previously to fill in the definition of make-s:

(define (make-s)

(cons-stream 1

(merge (scale-stream (make-s) 2)

(merge (scale-stream (make-s) 3)

(scale-stream (make-s) 5)))

)

)

8 Final Review

4 Iterators
4.1 Define a generator that yields the sequence of perfect squares. The sequence of

perfect squares looks like: 1, 4, 9, 16 . . .

def perfect_squares():

i = 0

while True:

yield i * i

i += 1

4.2 Implement zip, which yields a series of lists, each containing the nth items of each

iterable. It should stop when the smallest iterable runs out of elements.

def zip(*iterables):

"""

>>> z = zip_generator([1, 2, 3], [4, 5, 6], [7, 8])

>>> for i in z:

... print(i)

...

[1, 4, 7]

[2, 5, 8]

"""

iterators = [iter(iterable) for iterable in iterables]

while True:

yield [next(iterator) for iterator in iterators]

Final Review 9

4.3 Implement generate_subsets that returns all subsets of the positive integers from

1 to n. Each call to this generator’s next method will return a list of subsets of the

set {1, 2, . . . , n}, where n is the number of previous calls to next.

def generate_subsets():

"""

>>> subsets = generate_subsets()

>>> for _ in range(3):

... print(next(subsets))

...

[[]]

[[], [1]]

[[], [1], [2], [1, 2]]

"""

subsets = [[]]

n = 1

while True:

yield subsets

subsets = subsets + [s + [n] for s in subsets]

n += 1

We start with a base list of subsets. To get the next sequence of subsets, we need

two things:

• All current subsets will continue to be valid subsets in the future.

• We take all the subsets we currently have, and add the next number. These

are also valid subsets.

10 Final Review

5 SQL
pizzas defines the name, open, and close hours of pizzarias. meals defines typical

meal times. A pizzaria is open for a meal if the meal time is within open and close.

create table pizzas as

select "Pizzahhh" as name, 12 as open, 15 as close union

select "La Val's" , 11 , 22 union

select "Sliver" , 11 , 20 union

select "Cheeseboard" , 16 , 23 union

select "Emilia's" , 13 , 18;

create table meals as

select "breakfast" as meal, 11 as time union

select "lunch" , 13 union

select "dinner" , 19 union

select "snack" , 22;

Final Review 11

5.1 There’s nothing wrong with going to the same pizza place for meals greater than

6 hours apart, right? Create a table double with the earlier meal, the later meal,

and the name of the pizza place. Only include rows that describe two meals that

are more than 6 hours apart and a pizza place that is open for both of the meals.

create table double as

select a.meal, b.meal, name

from meals as a, meals as b, pizzas

where open <= a.time and a.time <= close and

open <= b.time and b.time <= close and

b.time > a.time + 6;

> select * from double where name="Sliver";

breakfast|dinner|Sliver

5.2 For each meal, list all the pizza options. Create a table options that has one row

for every meal and three columns. The first column is the meal, the second is the

total number of pizza places open for that meal, and the last column is a comma-

separated list of open pizza places in alphabetical order. Assume that there is at

least one pizza place open for every meal. Order the resulting rows by meal time.

Hint : Define a recursive table in a with statement that includes all partial lists of

options, then use the max aggregate function to pick the full list for each meal.

create table options as

with lists(meal, time, names, last, n) as (

select meal, time, name, name, 1

from pizzas, meals

where open <= time and time <= close union

select meal, time, names || ", " || name, name, n + 1

from lists, pizzas

where open <= time and time <= close and name > last

)

select meal, max(n), names from lists group by meal order by time;

> select * from options where meal="dinner";

dinner|3|Cheeseboard, La Val's, Sliver

	Scheme
	Interpreters
	Streams
	Iterators
	SQL

