
CS 61A Midterm 2 Review
Fall 2017 October 13, 2017

Instructions

Form a small group. Start on the first problem. Check off with a helper or

discuss your solution process with another group once everyone understands

how to solve the first problem and then repeat for the second problem . . .

You may not move to the next problem until you check off or discuss with

another group and everyone understands why the solution is what it is. You

may use any course resources at your disposal: the purpose of this review

session is to have everyone learning together as a group.

0.1 What would Python display?

>>> pikachu, charmander = 'electric', 'fire'

>>> ash = [[pikachu], [charmander], [[pikachu]]]

>>> pikachu, charmander = 2, 0

>>> ash[pikachu] = [ash, ash[pikachu][charmander]]

>>> ash

[['electric'], ['fire'], [[...], ['electric']]]

1 Lists & Tree Recursion
Mutative (destructive) operations change the state of a list by adding, re-

moving, or otherwise modifying the list itself.

• lst.append(element)

• lst.extend(lst)

• lst.pop(index)

• lst += lst (not lst = lst + lst)

• lst[i] = x

• lst[i:j] = lst

2 Midterm 2 Review

Non-mutative (non-destructive) operations include the following.

• lst + lst

• lst * n

• lst[i:j]

• list(lst)

Recall : To execute assignment statements,

• Evaluate all expressions to the right of the = sign

• Bind all names to the left of the = to those resulting values

The Golden Rule of Equals describes how this rule behaves with com-

posite values. Composite values, such as functions and lists, are connected

by a pointer. When an expression evaluates to a composite value, we are

returned the pointer to that value, rather than the value itself.

In an environment diagram, we can summarize this rule with,

Copy exactly what is in the box!

1.1 Write a list comprehension that accomplishes each of the following tasks.

(a) Square all the elements of a given list, lst.

[x ** 2 for x in lst]

(b) Compute the dot product of two lists lst1 and lst2. Hint : The dot

product is defined as lst1[0] · lst2[0]+lst1[1] · lst2[1]+ . . .+lst1[n] · lst2[n].

The Python zip function may be useful here.

sum([x * y for x, y in zip(lst1, lst2)])

(c) [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4]]

[[x for x in range(y)] for y in range(1, 6)]

(d) Return the same list as above, except now excluding every instance of

the number 2: [[0], [0, 1], [0, 1], [0, 1, 3], [0, 1, 3, 4]].

[[x for x in range(y) if x != 2] for y in range(1, 6)]

Midterm 2 Review 3

1.2 Draw the environment diagram that results from running the following code.

pom = [16, 15, 13]

pompom = pom * 2

pompom.append(pom[:])

pom.extend(pompom)

https://goo.gl/ZU1V7h

1.3 Draw the environment diagram that results from running the following code.

bless, up = 3, 5

another = [1, 2, 3, 4]

one = another[1:]

another[bless] = up

another.append(one.remove(2))

another[another[0]] = one

one[another[0]] = another[1]

one = one + [another.pop(3)]

another[1] = one[1][1][0]

one.append([one.pop(1)])

https://goo.gl/FyMmbJ

1.4 def jerry(jerry):

def jerome(alex):

alex.append(jerry[1:])

return alex

return jerome

ben = ['nice', ['ice']]

jerome = jerry(ben)

alex = jerome(['cream'])

ben[1].append(alex)

ben[1][1][1] = ben

print(ben)

https://goo.gl/uhSClr

https://goo.gl/ZU1V7h
https://goo.gl/FyMmbJ
https://goo.gl/uhSClr

4 Midterm 2 Review

1.5 Implement subset_sum, which takes in a list of integers and a number k and

returns whether there is a subset of the list that adds up to k? Hint : The

in operator can determine if an element belongs to a list.

def subset_sum(seq, k):

"""

>>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5

True

>>> subset_sum([1, 9, 5, 7, 3], 2)

False

"""

if len(seq) == 0:

return False

elif k in seq:

return True

else:

return subset_sum(seq[1:], k - seq[0]) or subset_sum(seq[1:], k)

2 Trees
def tree(label, branches=[]):

return [label] + list(branches)

def label(tree):

return tree[0]

def branches(tree):

return tree[1:]

Midterm 2 Review 5

2.1 A min-heap is a tree with the special property that every node’s value is

less than or equal to the values of all of its branches.

1

5

7

3

9 4

6

1

5

7

3

9 2

6

Implement is_min_heap which takes in a tree data abstraction and returns

whether the tree satisfies the min-heap property or not.

def is_min_heap(t):

for b in branches(t):

if label(t) > label(b) or not is_min_heap(b):

return False

return True

3 Growth
3.1 Give a tight asymptotic runtime bound for the following functions in Θ(·)

notation, or “Infinite” if the program does not terminate.

(a) def one(n):

while n > 0:

n = n // 2

Θ(log n)

(b) def two(n):

for i in range(n):

for j in range(i):

print(str(i), str(j))

Θ(n2)

(c) def three(n):

i = 1

while i <= n:

for j in range(i):

print(j)

i *= 2

Θ(n)

6 Midterm 2 Review

4 Nonlocals & OOP
4.1 Draw the environment diagram that results from running the code.

def campa(nile):

def ding(ding):

nonlocal nile

def nile(ring):

return ding

return nile(ding(1914)) + nile(1917)

ring = campa(lambda nile: 103)

https://goo.gl/G1Kmbw

https://goo.gl/G1Kmbw

Midterm 2 Review 7

4.2 Implement the classes so that the code to the right runs.

class Plant:

def __init__(self):

self.leaf = Leaf(self)

self.materials = []

self.height = 1

def absorb(self):

self.leaf.absorb()

def grow(self):

for sugar in self.materials:

sugar.activate()

self.height += 1

class Leaf:

def __init__(self, plant):

self.alive = True

self.sugars_used = 0

self.plant = plant

def absorb(self):

if self.alive:

self.plant.materials.append(Sugar(self, self.plant))

def __repr__(self):

return 'Leaf'

class Sugar:

sugars_created = 0

def __init__(self, leaf, plant):

self.leaf = leaf

self.plant = plant

Sugar.sugars_created += 1

def activate(self):

self.leaf.sugars_used += 1

self.plant.materials.remove(self)

def __repr__(self):

return 'Sugar'

>>> p = Plant()

>>> p.height

1

>>> p.materials

[]

>>> p.absorb()

>>> p.materials

[Sugar]

>>> Sugar.sugars_created

1

>>> p.leaf.sugars_used

0

>>> p.grow()

>>> p.materials

[]

>>> p.height

2

>>> p.leaf.sugars_used

1

8 Midterm 2 Review

5 Exam Preparation Extra Practice

5.1 Implement slice_reverse which takes a linked list s and mutatively reverses

the elements on the interval, [i, j) (including i but excluding j). Assume s

is zero-indexed, i > 0, i < j, and that s has at least j elements.

def slice_reverse(s, i, j):

"""

>>> s = Link(1, Link(2, Link(3)))

>>> slice_reverse(s, 1, 2)

>>> s

Link(1, Link(2, Link(3)))

>>> s = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> slice_reverse(s, 2, 4)

>>> s

Link(1, Link(2, Link(4, Link(3, Link(5)))))

"""

start = s

for _ in range(i - 1):

start = start.rest

reverse = Link.empty

current = start.rest

for _ in range(j - i):

rest = current.rest

current.rest = reverse

reverse = current

current = rest

start.rest.rest = current

start.rest = reverse

Midterm 2 Review 9

5.2 A Binary Search Tree is a tree where each node contains either 0, 1, or 2

nodes and where the left branch (if present) contains values strictly less than

(<) the root value, and the right branch (if present) contains values strictly

greater than (>) the root value. The definition is recursive: both the left

and right branches must also be BSTs for the entire tree to be a BST.

Implement is_binary which that takes in a Tree t, and returns True if t is

a Binary Search Tree and False otherwise. Trees can contain any number of

branches, but if a tree contains only one branch, interpret it as a left branch.

def is_binary(t):

def binary(t, lo, hi):

if lo < t.label < hi:

if t.is_leaf():

return True

elif len(t.branches) == 1 and t.branches[0].label < t.label:

return binary(t.branches[0], lo, t.label)

elif len(t.branches) == 2 and t.branches[0].label < t.label < t.branches[1].

label:

return binary(t.branches[0], lo, t.label) and binary(t.branches[1], t.label,

hi)

return False

return binary(t, float('-inf'), float('inf'))

5.3 Give a tight asymptotic runtime bound for the following scenarios in Θ(·)
notation, or “Infinite” if the program does not terminate. Assume the im-

plementation of is_binary is optimal.

(a) is_binary on a well-formed binary search tree with n nodes.

Θ(n)

(b) is_binary on a tree where each node contains 3 branches and the overall

height of the tree is n.

Θ(1)

	Lists & Tree Recursion
	Trees
	Growth
	Nonlocals & OOP
	Exam Preparation Extra Practice

