
EXAM PREPARATION SECTION 3

LISTS, TREES, AND TREE RECURSION

February 20 to February 22, 2018

1 Lists

1. Translating a List Diagram to Code

Fill in the following blanks so that after all lines have been executed, the environment
looks as in the diagram above. You may not use numerals or mathematical operators
in your solution.

x, y, z = 1, 2, 3
y = __
x = __
z = __

1

EXAM PREP HANDOUT 2: EXAM PREPARATION SECTION 3 Page 2

2 Tree Recursion

1. Tree Recursion with Trees
A number x is a sum of a tree t if and only if there is a path from t's root to one
of t's leaves whose labels sum to x. For example, the sums of the tree below are
20 (5+1+7+4+3), 8 (5+1+2), 7 (5+2+0), and 16 (5+2+9).

Fill in the following blanks so that the function behaves as indicated by its docstring.
You may assume you have access to the tree, label, branches, and is_leaf
functions. (See the bottom of Page 4 for the definitions of these Tree constructors
and selectors.)

def sum_range(t):
"""Returns the range of the sums of t, that is, the

difference between the largest and the smallest
sums of t."""

def helper(t):

if ___:

return [_____________, _____________]
else:

a = min([___________________________])

b = max([___________________________])

x = __________________________________

return [b + x, a + x]

x, y = helper(t)

return x - y

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan, Tiffany Perumpail, and James Uejio

EXAM PREP HANDOUT 2: EXAM PREPARATION SECTION 3 Page 3
2. This One Goes to Eleven (Fa14 Midterm 2 Q3b)

Fill in the blanks of the implementation of no_eleven below, a function that returns
a list of all distinct length-n lists of ones and sixes in which 1 and 1 do not appear
consecutively.

def no_eleven(n):
"""Return a list of lists of 1's and 6's that do not

contain 1 after 1.

>>> no_eleven(2)
[[6, 6], [6, 1], [1, 6]]
>>> no_eleven(3)
[[6, 6, 6], [6, 6, 1], [6, 1, 6], [1, 6, 6], [1, 6, 1]]
>>> no_eleven(4)[:4] # first half
[[6, 6, 6, 6], [6, 6, 6, 1], [6, 6, 1, 6], [6, 1, 6, 6]]
>>> no_eleven(4)[4:] # second half
[[6, 1, 6, 1], [1, 6, 6, 6], [1, 6, 6, 1], [1, 6, 1, 6]]
"""
if n == 0:

return __

elif n == 1:

return __

else:

a, b = no_eleven(___________), no_eleven(___________)

return [_________ for s in a] + [_________ for s in b]

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan, Tiffany Perumpail, and James Uejio

EXAM PREP HANDOUT 2: EXAM PREPARATION SECTION 3 Page 4
3. Expression Trees (Fa14 Final Q3a) (Note: This past exam problem has been slightly

modified to avoid using Object Oriented Programming.)

Your partner has created an interpreter for a language that can add or multiply pos-
itive integers. Expressions are represented as instances of the Tree class and must
have one of the following three forms:

• (Primitive) A positive integer entry and no branches, representing an integer

• (Combination) The entry '+', representing the sum of the values of its branches

• (Combination) The entry '*', representing the product of the values of its
branches

The sum of no values is 0. The product of no values is 1.

Unfortunately, multiplication in Python is broken on your computer. Implement
eval_with_add, which evaluates an expression without using multiplication. You
may fill the blanks with names or call expressions, but the only way you are allowed
to combine two numbers is using addition.

You may assume you have access to the tree, label, branches, and is_leaf
functions, as defined below.

Constructor
def tree(label, branches=[]):

for branch in branches:
assert is_tree(branch)

return [label] + list(branches)

Selectors
def label(tree):

return tree[0]

def branches(tree):
return tree[1:]

For convenience
def is_leaf(tree):

return not branches(tree)

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan, Tiffany Perumpail, and James Uejio

EXAM PREP HANDOUT 2: EXAM PREPARATION SECTION 3 Page 5
def eval_with_add(t):

"""Evaluate an expression tree of * and + using only
addition.

>>> plus = Tree('+', [Tree(2), Tree(3)])
>>> eval_with_add(plus)
5
>>> times = Tree('*', [Tree(2), Tree(3)])
>>> eval_with_add(times)
6
>>> deep = Tree('*', [Tree(2), plus, times])
>>> eval_with_add(deep)
60
>>> eval_with_add(Tree('*'))
1
"""
if label(t) == '+':

return sum(___)

elif label(t) == '*':

total = __

for b in branches(t):

total, term = 0, ________________________________

for ___________ in __________________________:

total = total + term

return total

else:

return label(t)

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan, Tiffany Perumpail, and James Uejio

	Lists
	Tree Recursion

