
LISTS AND TREES

COMPUTER SCIENCE MENTORS 61A

February 19 to February 21, 2018

1 Lists

1. Draw box-and-pointer diagrams for the following:
>>> a = [1, 2, 3]
>>> a

>>> a[2]

>>> b = a
>>> a = a + [4, 5]
>>> a

>>> b

>>> c = a
>>> a = [4, 5]
>>> a

>>> c

>>> d = c[0:2]
>>> c[0] = 9
>>> d

1



GROUP TUTORING HANDOUT 2: LISTS AND TREES Page 2

2. Draw the environment diagram that results from running the code.
def reverse(lst):

if len(lst) <= 1:
return lst

return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]
rev = reverse(lst)

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 2: LISTS AND TREES Page 3

3. Write a function that takes in a list nums and returns a new list with only the primes
from nums. Assume that is_prime(n) is defined. You may use a while loop, a for
loop, or a list comprehension.
def all_primes(nums):

4. Write a function that takes in a list of positive integers and outputs a list of lists where
the i-th list contains the integers from 0 up to, but not including, the i-th element of
the input list.
def list_of_lists(lst):
"""
>>> list_of_lists([1, 2, 3])
[[0], [0, 1], [0, 1, 2])

>>>list_of_lists([1])
[[0]]

>>>list_of_lists([])
[]
"""

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 2: LISTS AND TREES Page 4

2 Trees

Things to remember:
def tree(label, branches=[]):

return [label] + [branches]

def label(tree):
return tree[0]

def branches(tree):
return tree[1:] #returns a list of branches

As shown above, the tree constructor takes in a label and a list of branches (which are
themselves trees).

tree(4,
[tree(5, []),
tree(2,

[tree(2, []),
tree(1, [])]),

tree(1, []),
tree(8,

[tree(4, [])])])

The above expression constructs a tree that looks like this:

4

5 2

2 1

1 8

4

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 2: LISTS AND TREES Page 5

1. Construct the following tree and save it to the variable t.

9

2 4

1

4

7 3

2. What would this output? If the output is a tree, write the expression that would create
that tree (i.e. tree(..., ...))
>>> label(t)

>>> branches(t)[2]

>>> branches(branches(t)[2])[0]

3. Write the Python expression to return the integer 2 from t.

4. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.
def sum_of_nodes(t):

"""
>>> t = tree(...) # Tree from question 2.
>>> sum_of_nodes(t) # 9 + 2 + 4 + 4 + 1 + 7 + 3 = 30
30
"""

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


