
LISTS AND TREES

COMPUTER SCIENCE MENTORS 61A

February 19 to February 21, 2018

1 Lists

1. Draw box-and-pointer diagrams for the following:
>>> a = [1, 2, 3]
>>> a

>>> a[2]

>>> b = a
>>> a = a + [4, 5]
>>> a

>>> b

>>> c = a
>>> a = [4, 5]
>>> a

>>> c

>>> d = c[0:2]
>>> c[0] = 9
>>> d

1
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2. Draw the environment diagram that results from running the code.
def reverse(lst):

if len(lst) <= 1:
return lst

return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]
rev = reverse(lst)
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3. Write a function that takes in a list nums and returns a new list with only the primes
from nums. Assume that is_prime(n) is defined. You may use a while loop, a for
loop, or a list comprehension.
def all_primes(nums):

4. Write a function that takes in a list of positive integers and outputs a list of lists where
the i-th list contains the integers from 0 up to, but not including, the i-th element of
the input list.
def list_of_lists(lst):
"""
>>> list_of_lists([1, 2, 3])
[[0], [0, 1], [0, 1, 2])

>>>list_of_lists([1])
[[0]]

>>>list_of_lists([])
[]
"""
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2 Trees

Things to remember:
def tree(label, branches=[]):

return [label] + [branches]

def label(tree):
return tree[0]

def branches(tree):
return tree[1:] #returns a list of branches

As shown above, the tree constructor takes in a label and a list of branches (which are
themselves trees).

tree(4,
[tree(5, []),
tree(2,

[tree(2, []),
tree(1, [])]),

tree(1, []),
tree(8,

[tree(4, [])])])

The above expression constructs a tree that looks like this:

4

5 2

2 1

1 8

4
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1. Construct the following tree and save it to the variable t.

9

2 4

1

4

7 3

2. What would this output? If the output is a tree, write the expression that would create
that tree (i.e. tree(..., ...))
>>> label(t)

>>> branches(t)[2]

>>> branches(branches(t)[2])[0]

3. Write the Python expression to return the integer 2 from t.

4. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.
def sum_of_nodes(t):

"""
>>> t = tree(...) # Tree from question 2.
>>> sum_of_nodes(t) # 9 + 2 + 4 + 4 + 1 + 7 + 3 = 30
30
"""
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