
SCHEME

COMPUTER SCIENCE MENTORS 61A

March 19 to March 21, 2018

Scheme is a programming language, much like Python. In fact, many of Python’s design
features were inspired by Scheme. The point of learning this language is twofold: one,
we’re looking into what parts of Python generalize to other languages. Two, we want
to start thinking about how to design and build (an interpreter for) a programming lan-
guage, and it turns out Scheme is a nice one to build. In fact, we’ll show you enough of
the language in this hour to write recursive procedures. This section covers the basics.
You’ll learn the rest in lab and discussion. It’s pretty awesome that we’ll be picking up a
whole new programming language within an hour.

Visit scheme.cs61a.org to try the online interpreter. Type (autodraw) and the inter-
preter will automatically draw box-and-pointer diagrams whenever an expression eval-
utes to a Scheme pair.

1

scheme.cs61a.org


GROUP TUTORING HANDOUT 6: SCHEME Page 2
What Would Scheme Print?

1. What will Scheme output? Draw box-and-pointer diagrams to help determine this.
scm> 3.14

scm> pi

scm> (define pi 3.14)

scm> pi

scm> 'pi

scm> (if 2 3 4)

scm> (if 0 3 4)

scm> (if #f 3 4)

scm> (if nil 3 4)

scm> (if (= 1 1) 'hello 'goodbye)

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 6: SCHEME Page 3
scm> (define (factorial n)

(if (= n 0)
1
(* n (factorial (- n 1)) )))

scm> (factorial 5)

scm> (= 2 3)

scm> (= '() '())

scm> (eq? '() '())

scm> (eq? nil nil)

scm> (eq? '() nil)

scm> (pair? (cons 1 2))

scm> (list? (cons 1 2))

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 6: SCHEME Page 4
Code Writing in Scheme

2. Hailstone yet again Define a program called hailstone, which takes in two num-
bers seed and n, and returns the nth hailstone number in the sequence starting at
seed. Assume the hailstone sequence starting at seed is longer or equal to n. As a
reminder, to get the next number in the sequence, if the number is even, divide by
two. Else, multiply by 3 and add 1.

Useful procedures

• quotient: floor divides, much like // in python

(quotient 103 10) outputs 10

• remainder: takes two numbers and computes the remainder of dividing the
first number by the second

(remainder 103 10) outputs 3
; The hailstone sequence starting at seed = 10 would be
; 10 => 5 => 16 => 8 => 4 => 2 => 1

; Doctests
> (hailstone 10 0)
10
> (hailstone 10 1)
5
> (hailstone 10 2)
16
> (hailstone 5 1)
16
> (hailstone 5 5)
1

Scheme Lists

Scheme has linked lists built in. You can make the following analogy:

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 6: SCHEME Page 5

Link(1, Link.empty) (cons 1 nil)
a = Link(1, Link(2, Link.empty)) (define a (cons 1 (cons 2 nil)))
a.first (car a)
a.rest (cdr a)

However, Scheme cons is more powerful, as it allows its second argument to not be a
list. Try the following out in the interpreter. Draw box and pointers when appropriate.
Ask your mentor if you’re unsure what’s going on. You aren’t expected to understand
this completely on your own.

3. What will Scheme output? Draw box-and-pointer diagrams to help determine this.
scm> (cons 1 2)

scm> (cons 1 (cons 2 nil))

scm> (cons 1 '(2 3 4 5))

scm> (cons 1 '(2 (cons 3 4)))

scm> (cons 1 (2 (cons 3 4)))

scm> (define a '(1 2 . 3))

scm> a

scm> (car a)

scm> (cdr a)

scm> (cadr a)

How can we get the 3 out of a?

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 6: SCHEME Page 6
More Code Writing in Scheme

4. Define well-formed, which determines whether lst is a well-formed list or not.
Assume that lst only contains numbers.
; Doctests
> (well-formed '())
true
> (well-formed '(1 2 3))
true
; List doesn't end in nil
> (well-formed (cons 1 2))
false
; You do NOT need to check nested lists
> (well-formed (cons (cons 1 2) nil))
true

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 6: SCHEME Page 7

5. Define is-prefix, which takes in a list p and a list lst and determines if p is a
prefix of lst.
; Doctests:
> (is-prefix '() '())
true
> (is-prefix '() '(1 2))
true
> (is-prefix '(1) '(1 2))
true
> (is-prefix '(2) '(1 2))
false
; Note here p is longer than lst
> (is-prefix '(1 2) '(1))
false

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


