
TAIL RECURSION AND INTERPRETERS

COMPUTER SCIENCE MENTORS 61A

April 9 to April 11, 2018

1 Tail Recursion

1. What is a tail context? What is a tail call? What is a tail recursive function?

2. Why are tail calls useful for recursive functions?

3. Consider the following function:
(define (count-instance lst x)

(cond ((null? lst) 0)
((equal? (car lst) x) (+ 1 (count-instance

(cdr lst) x)))
(else (count-instance (cdr lst) x))))

Why is count-instance not a tail call? Optional: draw out the environment diagram of
this sum-list with lst (1 2 1 ) with x = 1.

1



GROUP TUTORING HANDOUT 8: TAIL RECURSION AND INTERPRETERS Page 2

4. Rewrite count-instance in a tail recursive context.
(define (count-tail lst x)

)

5. Implement filter, which takes in a one-argument function f and a list lst, and
returns a new list containing only the elements in lst for which f returns true. Your
function must be tail recursive.

You may wish to use the built-in append function, which takes in two lists and
returns a new list containing the elements of the first list followed by the elements of
the second.
(define (filter f lst)

)

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 8: TAIL RECURSION AND INTERPRETERS Page 3

2 Interpreters

1. Circle the number of calls to scheme_eval and scheme_apply for the code below.
(+ 1 2)

scheme_eval 1 3 4 6
scheme_apply 1 2 3 4

2. Circle the number of calls to scheme_eval and scheme_apply for the code below.
(if 1 (+ 2 3) (/ 1 0))

scheme_eval 1 3 4 6
scheme_apply 1 2 3 4

(or #f (and (+ 1 2) 'apple) (- 5 2))

scheme_eval 6 8 9 10
scheme_apply 1 2 3 4

(define (square x) (* x x))

(+ (square 3) (- 3 2))

scheme_eval 2 5 14 24
scheme_apply 1 2 3 4

(define (add x y) (+ x y))

(add (- 5 3) (or 0 2))

scheme_eval 12 13 14 15
scheme_apply 1 2 3 4

Computer Science Mentors CS61A Spring 2018: Chris Allsman and Jennie Chen, with
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


