
TAIL RECURSION AND INTERPRETERS

COMPUTER SCIENCE MENTORS 61A

April 9 to April 11, 2018

1 Tail Recursion

1. What is a tail context? What is a tail call? What is a tail recursive function?

2. Why are tail calls useful for recursive functions?

3. Consider the following function:
(define (count-instance lst x)

(cond ((null? lst) 0)
((equal? (car lst) x) (+ 1 (count-instance

(cdr lst) x)))
(else (count-instance (cdr lst) x))))

Why is count-instance not a tail call? Optional: draw out the environment diagram of
this sum-list with lst (1 2 1 ) with x = 1.
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4. Rewrite count-instance in a tail recursive context.
(define (count-tail lst x)

)

5. Implement filter, which takes in a one-argument function f and a list lst, and
returns a new list containing only the elements in lst for which f returns true. Your
function must be tail recursive.

You may wish to use the built-in append function, which takes in two lists and
returns a new list containing the elements of the first list followed by the elements of
the second.
(define (filter f lst)

)
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2 Interpreters

1. Circle the number of calls to scheme_eval and scheme_apply for the code below.
(+ 1 2)

scheme_eval 1 3 4 6
scheme_apply 1 2 3 4

2. Circle the number of calls to scheme_eval and scheme_apply for the code below.
(if 1 (+ 2 3) (/ 1 0))

scheme_eval 1 3 4 6
scheme_apply 1 2 3 4

(or #f (and (+ 1 2) 'apple) (- 5 2))

scheme_eval 6 8 9 10
scheme_apply 1 2 3 4

(define (square x) (* x x))

(+ (square 3) (- 3 2))

scheme_eval 2 5 14 24
scheme_apply 1 2 3 4

(define (add x y) (+ x y))

(add (- 5 3) (or 0 2))

scheme_eval 12 13 14 15
scheme_apply 1 2 3 4
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