
Higher-Order Functions

Announcements

Designing Functions

Describing Functions

4

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

4

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

4

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

4

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

4

def square(x):
 """Return X * X."""

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

4

def square(x):
 """Return X * X."""

x is a number

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

4

def square(x):
 """Return X * X."""

x is a number

square returns a non-
negative real number

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

4

def square(x):
 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function

5

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

>>> round(1.23, 1)
1.2

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

5

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

(Demo)

>>> round(1.23)
1

Generalization

Generalizing Patterns with Arguments

7

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

7

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

7

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r

7

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r

7

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

7

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

7

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

7

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

9

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

10

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

10

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

10

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

10

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

10

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

10

Functions as Return Values

(Demo)

Locally Defined Functions

12

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

Functions defined within other function bodies are bound to names in a local frame

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

The name add_three is bound
to a function

Functions defined within other function bodies are bound to names in a local frame

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Functions defined within other function bodies are bound to names in a local frame

12

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

12

Call Expressions as Operator Expressions

13

Call Expressions as Operator Expressions

make_adder(1) (2)

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

func make_adder(n)

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

func make_adder(n) 1

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

2
make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

2
make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

13

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

Lambda Expressions

(Demo)

Lambda Expressions

15

Lambda Expressions

>>> x = 10

15

Lambda Expressions

>>> x = 10

>>> square = x * x

15

Lambda Expressions

>>> x = 10

>>> square = x * x

An expression: this one
evaluates to a number

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

with formal parameter x
A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function
Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

15

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

15

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

16

Lambda Expressions Versus Def Statements

VS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x VS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

The Greek
letter lambda

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

The Greek
letter lambda

16

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

The Greek
letter lambda

16

