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def square(x): 
    """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the 
square of x
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Give each function exactly one job, but make it apply to many related situations

5

Don’t repeat yourself (DRY).  Implement a process just once, but execute it many times.

>>> round(1.23, 1) 
1.2

>>> round(1.23, 0) 
1

>>> round(1.23, 5) 
1.23

(Demo)

>>> round(1.23) 
1



Generalization



Generalizing Patterns with Arguments

7



Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

7



Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

7



Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r

7



Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r

7



Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

7



Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

7



Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

7

(Demo)



Higher-Order Functions



Generalizing Over Computational Processes

9



Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9



5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9



5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9



5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9



5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9



5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

9

(Demo)



Summation Example

hof.py                                                                        Page 2

    return total

def identity(k):
    return k

def cube(k):
    return pow(k, 3)

def summation(n, term):
    """Sum the first n terms of a sequence.
    
    >>> summation(5, cube)
    225
    """
    total, k = 0, 1
    while k <= n:
        total, k = total + term(k), k + 1
    return total

def pi_term(k):
    return 8 / (k * 4 − 3) / (k * 4 − 1)

# Local function definitions; returning functions

def make_adder(n):
    """Return a function that takes one argument k and returns k + n.

    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    """Return a function that composes f and g.

    f, g −− functions of a single argument
    """
    def h(x):
        return f(g(x))
    return h

@main
def run():
    interact()
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0 + 1 + 8 + 27 + 64 + 125
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Locally Defined Functions

A function that 
returns a function
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to a function
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Functions defined within other function bodies are bound to names in a local frame
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