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Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, 
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)
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Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

•Useful for typo detection!

5

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

A checksum digit is a 
function of all the other 

digits; It can be 
computed to detect typos

• Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

2+0+1+6 = 9



The sum of the digits of 6 is 6. 

Likewise for any one-digit (non-negative) number (i.e., < 10). 

The sum of the digits of 2016 is

The Problem Within the Problem

6

201 6

Sum of these digits + This digit

That is, we can break the problem of summing the digits of 2016 into a smaller instance of  
the same problem, plus some extra stuff. 

We call this recursion
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Recursion in Environment Diagrams

• The same function fact is called 
multiple times

• Different frames keep track of the 
different arguments in each call

• What n evaluates to depends upon  
the current environment

• Each call to fact solves a simpler 
problem than the last: smaller n

10

(Demo)

Interactive Diagram
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...arguments to a recursive call
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