
61A Lecture 6

Announcements

Recursive Functions

Recursive Functions

4

Demo

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

4

Demo

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

4

Demo

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

4

Demo

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)
4

Demo

Digit Sums

5

2+0+1+6 = 9

Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

5

2+0+1+6 = 9

Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

•Useful for typo detection!

5

2+0+1+6 = 9

Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

•Useful for typo detection!

5

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

2+0+1+6 = 9

Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

•Useful for typo detection!

5

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

A checksum digit is a
function of all the other

digits; It can be
computed to detect typos

2+0+1+6 = 9

Digit Sums

•If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

•Useful for typo detection!

5

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

A checksum digit is a
function of all the other

digits; It can be
computed to detect typos

• Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

2+0+1+6 = 9

The sum of the digits of 6 is 6.

Likewise for any one-digit (non-negative) number (i.e., < 10).

The sum of the digits of 2016 is

The Problem Within the Problem

6

201 6

Sum of these digits + This digit

That is, we can break the problem of summing the digits of 2016 into a smaller instance of
the same problem, plus some extra stuff.

We call this recursion

Sum Digits Without a While Statement

7

Sum Digits Without a While Statement

7

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

Sum Digits Without a While Statement

7

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

Sum Digits Without a While Statement

7

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

Sum Digits Without a While Statement

7

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

Sum Digits Without a While Statement

7

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

(Demo)

8

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Recursion in Environment Diagrams

Recursion in Environment Diagrams

10Interactive Diagram

Recursion in Environment Diagrams

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

10

(Demo)

Interactive Diagram

Recursion in Environment Diagrams

• The same function fact is called
multiple times

• Different frames keep track of the
different arguments in each call

• What n evaluates to depends upon  
the current environment

• Each call to fact solves a simpler
problem than the last: smaller n

10

(Demo)

Interactive Diagram

Iteration vs Recursion

11

Iteration vs Recursion

Iteration is a special case of recursion

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

Using while:

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

Using while:

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

Using while: Using recursion:

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

11

4! = 4 · 3 · 2 · 1 = 24

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

Math:

11

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

Math:

11

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

Math:

11

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

Math:

Names:

11

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

11

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

11

Verifying Recursive Functions

The Recursive Leap of Faith

13

The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway 13

The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

The Recursive Leap of Faith

Is fact implemented correctly?

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct

4. Verify that fact(n) is correct

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

13

Mutual Recursion

The Luhn Algorithm

15

The Luhn Algorithm

Used to verify credit card numbers

15

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

15

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

15

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3 = 30

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3

The Luhn sum of a valid credit card number is a multiple of 10

= 30

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3

The Luhn sum of a valid credit card number is a multiple of 10

= 30

(Demo)

Recursion and Iteration

Converting Recursion to Iteration

17

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

17

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

17

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

17

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

17

What's left to sum

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

A partial sum

17

What's left to sum

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

A partial sum

17

(Demo)
What's left to sum

Converting Iteration to Recursion

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
 digit_sum = 0
 while n > 0:
 n, last = split(n)
 digit_sum = digit_sum + last
 return digit_sum

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
 digit_sum = 0
 while n > 0:
 n, last = split(n)
 digit_sum = digit_sum + last
 return digit_sum

def sum_digits_rec(n, digit_sum):
 if n == 0:
 return digit_sum
 else:
 n, last = split(n)
 return sum_digits_rec(n, digit_sum + last)

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
 digit_sum = 0
 while n > 0:
 n, last = split(n)
 digit_sum = digit_sum + last
 return digit_sum

def sum_digits_rec(n, digit_sum):
 if n == 0:
 return digit_sum
 else:
 n, last = split(n)
 return sum_digits_rec(n, digit_sum + last)

Updates via assignment become...

18

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
 digit_sum = 0
 while n > 0:
 n, last = split(n)
 digit_sum = digit_sum + last
 return digit_sum

def sum_digits_rec(n, digit_sum):
 if n == 0:
 return digit_sum
 else:
 n, last = split(n)
 return sum_digits_rec(n, digit_sum + last)

Updates via assignment become...

...arguments to a recursive call

18

