61A Lecture 6

Announcements

Recursive Functions

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums

$$
2+0+1+6=9
$$

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
-Useful for typo detection!

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
-Useful for typo detection!

| The Bank of 61 A | |
| ---: | ---: | ---: | ---: |
| 12345678 9098 7658
 OSKI the bear | |
| | |

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
-Useful for typo detection!

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
-Useful for typo detection!

- Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

The Problem Within the Problem

The sum of the digits of 6 is 6 .
Likewise for any one-digit (non-negative) number (i.e., < 10).
The sum of the digits of 2016 is

That is, we can break the problem of summing the digits of 2016 into a smaller instance of the same problem, plus some extra stuff.

We call this recursion

Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
```


Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
    def sum_digits(n):
    """Return the sum of the digits of positive integer n.""""
```


Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
```


Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
```


Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

```
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


Recursion in Environment Diagrams

Recursion in Environment Diagrams

```
def fact(n):
    if n == 0:
        return 1
        else:
                                return n * fact(n-1)
    fact(3)
```


Recursion in Environment Diagrams

```
def fact(n):
    if n == 0:
                                return 1
        else:
                                return n * fact(n-1)
    fact(3)
```


Recursion in Environment Diagrams

(Demo)

f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0
$\underset{\text { value }}{\text { Return }} 1$

Recursion in Environment Diagrams

Iteration vs Recursion

Iteration vs Recursion

Iteration is a special case of recursion

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:
def fact_iter(n):
total, $k=1,1$
while k <= n :
total, k = total*k, k+1 return total

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
    total, k = total*k, k+1
    return total
```

Using recursion:

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
    total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
```

 if \(\mathrm{n}=0\) :
 return 1
 else:
 return \(n\) * fact(\(n-1\))

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
    total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

$$
n!=\prod_{k=1}^{n} k
$$

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math:

$$
n!=\prod_{k=1}^{n} k
$$

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}$

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

```
Using while:
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math:

$$
n!=\prod_{k=1}^{n} k
$$

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}$

Names:

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:
def fact_iter(n):
total, $k=1,1$
while $\mathrm{k}<=\mathrm{n}$:
total, $k=$ total*k, $k+1$ return total

Math:

$$
n!=\prod_{k=1}^{n} k
$$

[^0]Names:

Using recursion:

```
def fact(n):
```

 if \(\mathrm{n}=0\) :
 return 1
 else:
 return \(n\) * fact(\(n-1\))
 $n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}$

> .

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:
def fact_iter(n):
total, $k=1,1$
while $\mathrm{k}<=\mathrm{n}$:
total, $k=$ total*k, $k+1$ return total

$$
n!=\prod_{k=1}^{n} k
$$

Math:

Names:
n, total, k, fact_iter

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

n, fact

Verifying Recursive Functions

The Recursive Leap of Faith

The Recursive Leap of Faith

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```


The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat fact as a functional abstraction!

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat fact as a functional abstraction!
3. Assume that fact($\mathrm{n}-1$) is correct

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct
4. Verify that fact(n) is correct

Mutual Recursion

The Luhn Algorithm

The Luhn Algorithm

Used to verify credit card numbers

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

1	3	8	7	4	3

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

1	3	8	7	4	3
2	3	$1+6=7$	7	8	3

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

The Luhn sum of a valid credit card number is a multiple of 10

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

The Luhn sum of a valid credit card number is a multiple of 10

Recursion and Iteration

Converting Recursion to Iteration

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```


Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n.""""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
                What's left to sum
```


Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """"Return the sum of the digits of positive integer n.""""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last

\section*{Converting Recursion to Iteration}

Can be tricky: Iteration is a special case of recursion.
Idea: Figure out what state must be maintained by the iterative function.
```

def sum_digits(n):
""""Return the sum of the digits of positive integer n.""""
if n < 10:
return n
else:
all_but_last, last = split(n)
return sum_digits(all_but_last:) + last
A partial sum
What's left to sum

```

Converting Iteration to Recursion

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
```

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last
return digit_sum

```

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
```

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last
return digit_sum
def sum_digits_rec(n, digit_sum):
if n == 0:
return digit_sum
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

```

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
```

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last Updates via assignment become...
return digit_sum
def sum_digits_rec(n, digit_sum):
if n == 0:
return digit_sum
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

```

\section*{Converting Iteration to Recursion}

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
```

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n)
digit_sum = digit_sum + last Updates via assignment become...
return digit_sum
def sum_digits_rec(n, digit_sum):
if n == 0: digit_sum return dig
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

```
```


[^0]: n, total, k, fact_iter

