

Announcements

Order of Recursive Calls

The Cascade Function		
(Demo)		
$\begin{array}{cc} 1 & \text { def cascade }(n): \\ 2 & \text { if } n<10: \\ 3 & \operatorname{print}(n) \end{array}$	cascade	
4 else:	\|f1: cascade [parent=6lobal]	
$5 \quad$ print (n)	ก 123	
6 cascade (n//10)		
$\begin{array}{ll} \Rightarrow_{8}^{7} & \operatorname{print}(\mathrm{n}) \\ 9 & \text { cascade (123) } \end{array}$	$\begin{array}{r} \mathrm{f} 2: \text { cascade [parent=Global] } \\ \qquad \begin{array}{r} \mathrm{n} \text { Return } \\ \text { value } \end{array} \\ \hline \text { None } \end{array}$	- Each cascade frame is from a different call to cascade. - Until the Return value appears, that call has not completed.
Program output:		
$\begin{aligned} & 123 \\ & 12 \\ & 1 \end{aligned}$	ff3: cascade [parent=6lobal] \qquad Return None value None	- Any statement can appear before or after the recursive call.
Interactive Diagram		

Example: Inverse Cascade

	Tree Recursion

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order. increasing order.
count_partitions(6, 4)

```
2+4=6
1+1+4=6
3+3=6
1+2+3=6
1+1+1+3=6
2+2+2=6
1+1+2+2=6
1+1+1+1+2=6
1+1+1+1+1+1=6
```


A Tree-Recursive Process

The computational process of fib evolves into a tree structure

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

```
count_partitions(6, 4)
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

