Tree Recursion

Announcements

Order of Recursive Calls

The Cascade Function

(Demo)

The Cascade Function

def cascade(n):
def cascade(n):
def cascade(n):
if n < 10:
if n < 10:
if n < 10:
print(n)
print(n)
print(n)
else:
else:
else:
print(n)
print(n)
print(n)
cascade(n//10)
cascade(n//10)
cascade(n//10)
print(n)
print(n)
print(n)
cascade(123)
cascade(123)
cascade(123)
f1: cascade [parent=Global]
n 123
f2: cascade [parent=Global]
n 12
Return None
value
f3: cascade [parent=Global]
n 1
Return
value None

Interactive Diagram

The Cascade Function

The Cascade Function

The Cascade Function

(Demo)

Program output:
123
12
1
12

f1: cascade [parent=Global]
n 123
f2: cascade [parent=Global] Each cascade frame is from a
n 12
Return
value None
f3: cascade [parent=Global]

n	1
$\begin{array}{r}\text { Return } \\ \text { value }\end{array}$	None

different call to cascade.

- Until the Return value appears, that call has not completed.

The Cascade Function

(Demo)

Program output:
123
12
1
12

f1: cascade [parent=Global]
n 123
f2: cascade [parent=Global] - Each cascade frame is from a n 12 different call to cascade.
Return
value None
f3: cascade [parent=Global]

n	1
$\begin{array}{r}\text { Return } \\ \text { value }\end{array}$	None

- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

The Cascade Function

(Demo)

Program output:
123
12
1
12

f1: cascade [parent=Global]
n 123
f2: cascade [parent=Global] - Each cascade frame is from a n 12 different call to cascade.
-Until the Return value appears, that call has not completed.

- Any statement can appear before or after the recursive call.

The Cascade Function

(Demo)

Program output:
123
12
1
12

f1: cascade [parent=Global]
n 123
f2: cascade [parent=Global] - Each cascade frame is from a n 12 different call to cascade.

Return
value None
f3: cascade [parent=Global]

n	1
$\begin{array}{r}\text { Return } \\ \text { value }\end{array}$	None

- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

The Cascade Function

(Demo)

The Cascade Function

(Demo)

Two Definitions of Cascade

Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

def cascade(n):
print(n)
if n >= 10:
cascade(n//10)
print(n)

Two Definitions of Cascade

(Demo)

```
```

def cascade(n):

```
```

def cascade(n):
if n < 10:
if n < 10:
print(n)
print(n)
else:
else:
print(n)
print(n)
cascade(n//10)
cascade(n//10)
print(n)

```
```

 print(n)
    ```
```

def cascade(n):
print(n)
if n >= 10:
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better

Two Definitions of Cascade

(Demo)

```
```

def cascade(n):

```
```

def cascade(n):

```
if n < 10:
```

if n < 10:

```
if n < 10:
        print(n)
        print(n)
        print(n)
    else:
    else:
    else:
    print(n)
    print(n)
    print(n)
        cascade(n//10)
        cascade(n//10)
        cascade(n//10)
        print(n)
```

```
```

 print(n)
    ```
```

```
        print(n)
```

```
```

```
```

def cascade(n):

```
```

def cascade(n):
print(n)
print(n)
if n >= 10:
if n >= 10:
cascade(n//10)
cascade(n//10)
print(n)

```
```

 print(n)
    ```
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)

Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first

Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

Inverse Cascade

Write a function that prints an inverse cascade:

1
12
123
1234
123
12
1

Inverse Cascade

Write a function that prints an inverse cascade:

1
12
123
1234
123
12
1

Inverse Cascade

Write a function that prints an inverse cascade:

Inverse Cascade

Write a function that prints an inverse cascade:


```
def inverse_cascade(n):
grow(n)
    print(n)
    shrink(n)
```

```
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)
grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(
```


Inverse Cascade

Write a function that prints an inverse cascade:

1
 12
 123
 1234
 123
 12
 1

```
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

```
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)
```

 grow \(=\) lambda n : f_then_g(grow, print, \(\mathrm{n} / / 10\))
 shrink = lambda n: f_then_g(print, shrink, n//10)

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
$\mathrm{n}: \quad 0,1,2,3,4,5,6,7,8$,

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

n: $0,1,2,3,4,5,6,7,8$, fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

```
    n: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... , 35
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
```


Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
n: $0,1,2,3,4,5,6,7,8, \ldots 35$
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
def fib(n):
if $\mathrm{n}==0$:
return 0

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
n: $0,1,2,3,4,5,6,7,8, \ldots 35$
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
def fib(n):
if $\mathrm{n}==0$:
return 0
elif $\mathrm{n}==1$:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
n: $0,1,2,3,4,5,6,7,8, \ldots 35$
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
def fib(n):
if $\mathrm{n}==0$:
return 0
elif $\mathrm{n}==1$:
return 1

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

```
            n: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... , 35
            fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
def fib(n):
    if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
```


Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

```
            n: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... , 35
            fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ... , 9,227,465
def fib(n):
    if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return fib(n-2) + fib(n-1)
```


A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
fib(5)
```


A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

Repetition in Tree-Recursive Computation

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
-Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
-Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
-count_partitions(2, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- Count_partitions(2, 4) = = = "

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4) = = = "
- count_partitions(6, 3)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4) = = = *
-count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
count_partitions(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4) = = = *
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding

```
def count_partitions(n, m):
```

 simpler instances of the problem.
 - Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
-Don't use any 4
- Solve two simpler problems: else:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```
def count_partitions(n, m):
```

else:
with_m = count_partitions(n-m, m)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```
def count_partitions(n, m):
```

else:
with_m = count_partitions(n-m, m)
without_m = count_partitions(n, m-1)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- count_partitions(2, 4)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```
def count_partitions(n, m):
```

else:
with_m = count_partitions(n-m, m)
without_m = count_partitions(n, m-1)
return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
-Count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
- count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
else:

```
def count_partitions(n, m):
```

 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding

```
def count_partitions(n, m):
```

simpler instances of the problem.

- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems: else:
-Count_partitions(2, 4) $==-=-=-=-=-=-=-=-=-=-\Rightarrow$ with_m = count_partitions(n-m, m)
-count_partitions $(6,3)=-=-=-==-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
- Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.

```
def count_partitions(n, m):
    if n == 0:
```

- Explore two possibilities:
-Use at least one 4
 - Don't use any 4
 - Solve two simpler problems: else:
-Count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
 - Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems: else:
-Count_partitions (2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m,m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
Tree recursion often involves
exploring different choices.

```
def count_partitions(n, m):
    if n == 0:
            return 1
```

 explore two possibilities:
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
else:
-count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-===\Rightarrow$ with_m = count_partitions(n-m, m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
Tree recursion often involves
exploring different choices.

```
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
```

 - Use at least one 4
 - Don't use any 4
 Solve two simpler problems: else:
 - Count_partitions (2, 4) \(=-=-=-=-=-=-=-=-=-==\Rightarrow\) with_m = count_partitions(n-m,m)
 return with_m + without_m
 exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
-Don't use any 4
- Solve two simpler problems:
else:
-Count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
- Tree recursion often involves
exploring different choices.

```
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
```

 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
-count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
-Tree recursion often involves
exploring different choices.

```
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
```

 else:
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
-count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
count partitions $(6,3)=-=-=-=-=-=-=-=-==-\Rightarrow$ without_m = count_partitions(n, m-1)
- Tree recursion often involves exploring different choices.
return with_m + without_m

```
def count_partitions(n, m):
```

 if \(\mathrm{n}==0\) :
 return 1
 elif \(n<0\) :
 return 0
 elif m == 0:
 return 0
 else:
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
-Use at least one 4
- Don't use any 4
- Solve two simpler problems:
-Count_partitions(2, 4) $=-=-=-=-=-=-=-=-=-=-=\Rightarrow$ with_m = count_partitions(n-m, m)
-count partitions $(6,3)=-=-=-=-=-=-=-=====\Rightarrow$ without_m = count_partitions(n, m-1)
-Tree recursion often involves exploring different choices.

```
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
    return with_m + without_m
```

(Demo)

