Growth

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Memoization

Memoization

Idea: Remember the results that have been computed before

Memoized Tree Recursion

Space

The Consumption of Space

Which environment frames do we need to keep during evaluation? At any moment there is a set of active environments Values and frames in active environments consume memory Memory that is used for other values and frames can be recycled

Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

(Demo)

Interactive Diagram

Fibonacci Space Consumption

Fibonacci Space Consumption

Time

Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

```
def factors(n):Time (number of divisions)Slow: Test each k from 1 through nnFast: Test each k from 1 to square root n<br/>For every k, n/k is also a factor!Greatest integer less than \sqrt{n}
```

Question: How many time does each implementation use division? (Demo)

Orders of Growth

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

- **n:** size of the problem
- **R(n):** measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants $k_1 \mbox{ and } k_2$ such that

$$k_1 \cdot f(n) \le R(n) \le k_2 \cdot f(n)$$

for all ${\bf n}$ larger than some minimum ${\bf m}$

Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

<pre>def factors(n):</pre>	Time	Space	_
Slow: Test each k from 1 through n	$\Theta(n)$	$\Theta(1)$	Assumption: Integers occupy a
Fast: Test each k from 1 to square root n For every k, n/k is also a factor!	$\Theta(\sqrt{n})$	$\Theta(1)$	fixed amount of space
(Demo)			

16

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
                                                                                    b^{n} = \begin{cases} 1 & \text{if } n = 0\\ b \cdot b^{n-1} & \text{otherwise} \end{cases}
       if n == 0:
              return 1
       else:
              return b * exp(b, n-1)
def square(x):
       return x*x
def exp_fast(b, n):
                                                                                    b^{n} = \begin{cases} 1 & \text{if } n = 0\\ (b^{\frac{1}{2}n})^{2} & \text{if } n \text{ is even}\\ b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}
       if n == 0:
              return 1
       elif n % 2 == 0:
               return square(exp fast(b, n//2))
       else:
               return b * exp fast(b, n-1)
```

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

```
Time
                                                                           Space
def exp(b, n):
    if n == 0:
                                                             \Theta(n)
                                                                          \Theta(n)
         return 1
    else:
         return b * exp(b, n-1)
def square(x):
    return x*x
def exp_fast(b, n):
    if n == 0:
         return 1
                                                             \Theta(\log n)
                                                                         \Theta(\log n)
    elif n % 2 == 0:
         return square(exp_fast(b, n//2))
    else:
         return b * exp_fast(b, n-1)
```

Comparing Orders of Growth

Lower-order terms: The fastest-growing part of the computation dominates the total

 $\Theta(n^2)$ $\Theta(n^2+n)$ $\Theta(n^2+500\cdot n+\log_2 n+1000)$

21

Comparing orders of growth (n is the problem size)

$$\begin{array}{lll} \Theta(b^n) & \mbox{Exponential growth. Recursive fib takes} \\ \Theta(\phi^n) \mbox{ steps, where } \phi = \frac{1+\sqrt{5}}{2} \approx 1.61828 \\ & \mbox{Incrementing the problem scales R(n) by a factor} \\ \Theta(n^2) & \mbox{Quadratic growth. E.g., overlap} \\ & \mbox{Incrementing n increases R(n) by the problem size n} \\ \Theta(n) & \mbox{Linear growth. E.g., slow factors or exp} \\ \Theta(\sqrt{n}) & \mbox{Square root growth. E.g., factors_fast} \\ \Theta(\log n) & \mbox{Logarithmic growth. E.g., exp_fast} \\ & \mbox{Doubling the problem only increments R(n).} \\ & \mbox{O(1)} & \mbox{Constant. The problem size doesn't matter} \end{array}$$