Growth

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
    if n == 0:
    if n == 0:
        return 0
        return 0
        return 0
        elif n == 1:
        elif n == 1:
        elif n == 1:
            return 1
            return 1
            return 1
    else:
    else:
            return fib(n-2) + fib(n-1)
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Memoization

\section*{Memoization}

Idea: Remember the results that have been computed before
```

def memo(f):
Keys are arguments that
map to return values
def memoized(n):
if n not in cache:
cache[n] = f(n)
return cache[n]
returnmemoized
Same behavior as f,
if f is a pure function

```

\section*{Memoized Tree Recursion}


Space

\section*{The Consumption of Space}

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

\section*{Active environments:}
- Environments for any function calls currently being evaluated

Parent environments of functions named in active environments
(Demo)

Interactive Diagram

\section*{Fibonacci Space Consumption}


\section*{Fibonacci Space Consumption}


Time

\section*{Comparing Implementations}

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer \(n\) have?

A factor \(k\) of \(n\) is a positive integer that evenly divides \(n\)
def factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n

Fast: Test each \(k\) from 1 to square root \(n\) For every \(k, n / k\) is also a factor!
\(n\)

Greatest integer less than \(\sqrt{n}\)

Question: How many time does each implementation use division? (Demo)

\section*{Orders of Growth}

\section*{Order of Growth}

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
\(\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}\)
\[
R(n)=\Theta(f(n))
\]
means that there are positive constants \(\mathbf{k}_{\mathbf{1}}\) and \(\mathbf{k}_{\mathbf{2}}\) such that
\[
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
\]
for all \(\mathbf{n}\) larger than some minimum m

\section*{Order of Growth of Counting Factors}

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer \(n\) have?

A factor \(k\) of \(n\) is a positive integer that evenly divides \(n\)
```

def factors(n):

```

Slow: Test each k from 1 through \(n\)

Fast: Test each \(k\) from 1 to square root n For every k, \(n / k\) is also a factor!

Time Space

(Demo)

Exponentiation

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size
```

def exp(b, n):
if n == 0:
return 1
else:
return b * exp(b, n-1)
def square(x):
return x*x
def exp_fast(b, n):
if \overline{n}== 0:
return 1
elif n % 2 == 0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)
b}={\begin{array}{ll}{1}\&{\mathrm{ if }n=0}
{b\cdot\mp@subsup{b}{}{n-1}}\&{\mathrm{ otherwise}}

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size

Time
\(\Theta(n) \quad \Theta(n)\)
def square(x):
    return \(\mathrm{x} * \mathrm{x}\)
def exp_fast(b, n):
    if \(\bar{n}==0\) :
        return 1
    elif \(n\) \% 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)

\section*{Comparing Orders of Growth}

\section*{Properties of Orders of Growth}

Constants: Constant terms do not affect the order of growth of a process
\[
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
\]

Logarithms: The base of a logarithm does not affect the order of growth of a process
\(\Theta\left(\log _{2} n\right)\)
\(\Theta\left(\log _{10} n\right)\)
\(\Theta(\ln n)\)

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps
```

def overlap(a, b):
count = 0
for item in a: Outer: length of a
if item in b:
count += 1 Inner: length of b
return count

```

If a and b are both length n, then overlap takes \(\Theta\left(n^{2}\right)\) steps

Lower-order terms: The fastest-growing part of the computation dominates the total
\[
\Theta\left(n^{2}\right) \quad \Theta\left(n^{2}+n\right) \quad \Theta\left(n^{2}+500 \cdot n+\log _{2} n+1000\right)
\]

Comparing orders of growth ( n is the problem size)
\(\Theta\left(b^{n}\right)\)
\(\Theta\left(n^{2}\right)\)
\(\Theta\left(\begin{array}{l}\text { Exponential growth. Recursive fib takes } \\
\\
\text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\text { Quadratic growth. E.g., overlap } \\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n}\end{array}\right.\)
\(\Theta(\sqrt{n})\)
\(\Theta(\log n)\) \begin{tabular}{l} 
Linear growth. E.g., slow factors or exp \begin{tabular}{l} 
Logarithmic growth. E.g., exp_fast
\end{tabular} \\
\(\Theta(1)\)
\end{tabular}```

