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Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:
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(Demo)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

def fib(n): 
    if n == 0: 
        return 0 
    elif n == 1: 
        return 1 
    else: 
        return fib(n-2) + fib(n-1)



Memoization



Memoization

Idea: Remember the results that have been computed before

def memo(f): 

    cache = {} 
    def memoized(n): 

        if n not in cache: 
            cache[n] = f(n) 

        return cache[n] 
    return memoized

Keys are arguments that 
map to return values

Same behavior as f,  
if f is a pure function
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(Demo)



Memoized Tree Recursion
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Space



The Consumption of Space

Which environment frames do we need to keep during evaluation? 

At any moment there is a set of active environments 

Values and frames in active environments consume memory 

Memory that is used for other values and frames can be recycled
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Active environments:  

• Environments for any function calls currently being evaluated 

• Parent environments of functions named in active environments

(Demo)

Interactive Diagram



Fibonacci Space Consumption
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Fibonacci Space Consumption
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Assume we have 
reached this step
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Time



n

Comparing Implementations

Implementations of the same functional abstraction can require different resources
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Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n 
      For every k, n/k is also a factor!

def factors(n):

Greatest integer less than
p
n

Question: How many time does each implementation use division? (Demo)



Orders of Growth



R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
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n:     size of the problem 

R(n):  measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for all n larger than some minimum m



Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

16

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n 
      For every k, n/k is also a factor!

def factors(n): Time Space

�(n) �(1)

⇥(
p
n) �(1)

Assumption: 
integers occupy a 
fixed amount of 

space

(Demo)



Exponentiation



bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size
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def exp(b, n): 
    if n == 0: 
        return 1 
    else: 
        return b * exp(b, n-1)

def square(x): 
    return x*x 

def exp_fast(b, n): 
    if n == 0: 
        return 1 
    elif n % 2 == 0: 
        return square(exp_fast(b, n//2)) 
    else: 
        return b * exp_fast(b, n-1)

(Demo)



Exponentiation
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Time Space

�(n) �(n)

�(log n) �(log n)

Goal: one more multiplication lets us double the problem size

def exp(b, n): 
    if n == 0: 
        return 1 
    else: 
        return b * exp(b, n-1)

def square(x): 
    return x*x 

def exp_fast(b, n): 
    if n == 0: 
        return 1 
    elif n % 2 == 0: 
        return square(exp_fast(b, n//2)) 
    else: 
        return b * exp_fast(b, n-1)



Comparing Orders of Growth



Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
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Logarithms: The base of a logarithm does not affect the order of growth of a process

Nesting: When an inner process is repeated for each step in an outer process, multiply the 
steps in the outer and inner processes to find the total number of steps

⇥(n) ⇥(500 · n) ⇥(
1

500
· n)

⇥(log2 n) ⇥(log10 n) ⇥(lnn)

def overlap(a, b): 
    count = 0 
    for item in a: 
        if item in b: 
            count += 1 
    return count

Outer: length of a

Inner: length of b

If a and b are both length n, 
then overlap takes      steps⇥(n2)

Lower-order terms: The fastest-growing part of the computation dominates the total

⇥(n2 + n)⇥(n2) ⇥(n2 + 500 · n+ log2 n+ 1000)



Comparing orders of growth (n is the problem size)
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�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth.  Recursive fib takes 

�(�n) � =
1 +

�
5

2
� 1.61828steps, where 

Incrementing the problem scales R(n) by a factor

Linear growth.  E.g., slow factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n).

Constant. The problem size doesn't matter

Quadratic growth.  E.g., overlap
Incrementing n increases R(n) by the problem size n

⇥(
p
n) Square root growth.  E.g., factors_fast


