
Growth

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

4

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}
 def memoized(n):

 if n not in cache:
 cache[n] = f(n)

 return cache[n]
 return memoized

Keys are arguments that
map to return values

Same behavior as f,  
if f is a pure function

6

(Demo)

Memoized Tree Recursion

7

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Space

The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

9

Active environments:

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments

(Demo)

Interactive Diagram

Fibonacci Space Consumption

10

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Fibonacci Space Consumption

11

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Has an active environment
Can be reclaimed
Hasn't yet been created

Time

n

Comparing Implementations

Implementations of the same functional abstraction can require different resources

13

Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n
 For every k, n/k is also a factor!

def factors(n):

Greatest integer less than
p
n

Question: How many time does each implementation use division? (Demo)

Orders of Growth

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

15

n: size of the problem

R(n): measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for all n larger than some minimum m

Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

16

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n
 For every k, n/k is also a factor!

def factors(n): Time Space

�(n) �(1)

⇥(
p
n) �(1)

Assumption:
integers occupy a
fixed amount of

space

(Demo)

Exponentiation

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size

18

def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def exp_fast(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n//2))
 else:
 return b * exp_fast(b, n-1)

(Demo)

Exponentiation

19

Time Space

�(n) �(n)

�(log n) �(log n)

Goal: one more multiplication lets us double the problem size

def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def exp_fast(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n//2))
 else:
 return b * exp_fast(b, n-1)

Comparing Orders of Growth

Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

21

Logarithms: The base of a logarithm does not affect the order of growth of a process

Nesting: When an inner process is repeated for each step in an outer process, multiply the
steps in the outer and inner processes to find the total number of steps

⇥(n) ⇥(500 · n) ⇥(
1

500
· n)

⇥(log2 n) ⇥(log10 n) ⇥(lnn)

def overlap(a, b):
 count = 0
 for item in a:
 if item in b:
 count += 1
 return count

Outer: length of a

Inner: length of b

If a and b are both length n,
then overlap takes steps⇥(n2)

Lower-order terms: The fastest-growing part of the computation dominates the total

⇥(n2 + n)⇥(n2) ⇥(n2 + 500 · n+ log2 n+ 1000)

Comparing orders of growth (n is the problem size)

22

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth. Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor

Linear growth. E.g., slow factors or exp

Logarithmic growth. E.g., exp_fast
Doubling the problem only increments R(n).

Constant. The problem size doesn't matter

Quadratic growth. E.g., overlap
Incrementing n increases R(n) by the problem size n

⇥(
p
n) Square root growth. E.g., factors_fast

