Growth

Announcements

Measuring Efficiency

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```



## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


http://en,wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

    fib(3)
    

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:


```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```



## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:


```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


http://en,wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


fib(5)

http://en,wikipedia,org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
            return fib(n-2) + fib(n-1)
```

        return 0
        return 0
        elif \(\mathrm{n}==1\) :
        elif \(\mathrm{n}==1\) :
            return 1
            return 1
        else:
        else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return fib(n-2) + fib(n-1)
```

        return 0
        return 0
    elif \(\mathrm{n}==1\) :
    elif \(\mathrm{n}==1\) :
        return 1
        return 1
    else:
    else:
    
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

## Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

```
def fib(n):
    if n == 0:
        return fib(n-2) + fib(n-1)
        return 0
        return 0
    elif \(\mathrm{n}==1\) :
    elif \(\mathrm{n}==1\) :
        return 1
        return 1
    else:

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

\section*{Recursive Computation of the Fibonacci Sequence}

Our first example of tree recursion:

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

\section*{Recursive Computation of the Fibonacci Sequence}

Our first example of tree recursion:
```

def fib(n):
if n == 0:
if n == 0:
if n == 0:
return 0
return 0
return 0
elif n == 1:
elif n == 1:
elif n == 1:
return 1
return 1
return 1
else:
else:
return fib(n-2) + fib(n-1)
http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Memoization

## Memoization

Idea: Remember the results that have been computed before

## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f): }\begin{array}{c}{\mathrm{ Keys are arguments that }}\\{\mathrm{ map to return values }}
            if n not in cache:
                    cache[n] = f(n)
            return cache[n]
    return memoized
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    Keys are arguments that
    map to return values
    def memoized(n):
            if n not in cache:
                cache[n] = f(n)
            return cache[n]
return memoized
            Same behavior as f,
                if f is a pure function
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    Keys are arguments that
    map to return values
    def memoized(n):
            if n not in cache:
                cache[n] = f(n)
            return cache[n]
returnmemoized
            Same behavior as f,
                if f is a pure function
```


## Memoized Tree Recursion



Space

The Consumption of Space

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

## The Consumption of Space

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

## The Consumption of Space

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

## Active environments:

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

## Active environments:

- Environments for any function calls currently being evaluated


## The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

## Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments


## The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments
Values and frames in active environments consume memory
Memory that is used for other values and frames can be recycled

## Active environments:

- Environments for any function calls currently being evaluated

Parent environments of functions named in active environments
(Demo)

Interactive Diagram

Fibonacci Space Consumption

Fibonacci Space Consumption
fib(5)

# Fibonacci Space Consumption 

fib(5)
fib(3)

## Fibonacci Space Consumption



Time

Comparing Implementations

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):

Slow: Test each k from 1 through n

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root $n$ For every $k, n / k$ is also a factor!

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer n have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root n For every $k, n / k$ is also a factor!

Question: How many time does each implementation use division? (Demo)

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root $n$ For every $k, n / k$ is also a factor!

Question: How many time does each implementation use division? (Demo)

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n $n$

Fast: Test each $k$ from 1 to square root n For every $k, n / k$ is also a factor!

Question: How many time does each implementation use division? (Demo)

## Comparing Implementations

Implementations of the same functional abstraction can require different resources

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root $n$ For every $k, n / k$ is also a factor!
$n$

Greatest integer less than $\sqrt{n}$

Question: How many time does each implementation use division? (Demo)

## Orders of Growth

## Order of Growth

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ such that

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for all $\mathbf{n}$ larger than some minimum m

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for all $\mathbf{n}$ larger than some minimum m

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
n: size of the problem
$\mathbf{R ( n ) : ~ m e a s u r e m e n t ~ o f ~ s o m e ~ r e s o u r c e ~ u s e d ~ ( t i m e ~ o r ~ s p a c e ) ~}$

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for all $\mathbf{n}$ larger than some minimum m

## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$
def factors(n):

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root n For every $k, n / k$ is also a factor!

## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

```
def factors(n):
```

Time
Space

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root n For every $k, n / k$ is also a factor!

## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

```
def factors(n):
```

Slow: Test each k from 1 through n

Fast: Test each $k$ from 1 to square root n For every k, $n / k$ is also a factor!

Time Space
$\Theta(n) \quad \Theta(1)$

## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

```
def factors(n):
```

Time
$\Theta(n)$
$\Theta(\sqrt{n})$
$\Theta(1)$

## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

```
def factors(n):
```

Slow: Test each k from 1 through $n$

Fast: Test each $k$ from 1 to square root n For every $k, n / k$ is also a factor!

Time
$\Theta(n)$
$\Theta(\sqrt{n})$

Space


## Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of time

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer that evenly divides $n$

```
def factors(n):
```

Slow: Test each k from 1 through $n$

Fast: Test each $k$ from 1 to square root n For every k, $n / k$ is also a factor!

Time Space

(Demo)

Exponentiation

## Exponentiation

## Exponentiation

Goal: one more multiplication lets us double the problem size

## Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
```

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
$$

## Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
```

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
$$

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
$$

## Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def square(x):
    return x*x
def exp_fast(b, n):
    if \overline{n}== 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
b}={\begin{array}{ll}{1}&{\mathrm{ if }n=0}\\{b\cdot\mp@subsup{b}{}{n-1}}&{\mathrm{ otherwise }}
b}={\begin{array}{ll}{1}&{\mathrm{ if }n=0}\\{(\mp@subsup{b}{}{\frac{1}{2}n}\mp@subsup{)}{}{2}}&{\mathrm{ if }n\mathrm{ is even }}\\{b\cdot\mp@subsup{b}{}{n-1}}&{\mathrm{ if }n\mathrm{ is odd }}
```


## Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def square(x):
    return x*x
def exp_fast(b, n):
    if \overline{n}== 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
b}={\begin{array}{ll}{1}&{\mathrm{ if }n=0}\\{b\cdot\mp@subsup{b}{}{n-1}}&{\mathrm{ otherwise}}
```


## Exponentiation

Goal: one more multiplication lets us double the problem size
Time
Space

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def square(x):
    return x*x
def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size

Time
$\Theta(n) \quad \Theta(n)$

```
def exp(b, n):
        if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def square(x):
    return x*x
def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size

Time
$\Theta(n) \quad \Theta(n)$
def square(x):
return $\mathrm{x} * \mathrm{x}$
def exp_fast(b, n):
if $\bar{n}==0$ :
return 1
elif $n$ \% 2 == 0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)

## Comparing Orders of Growth

Properties of Orders of Growth

## Properties of Orders of Growth

## Constants: Constant terms do not affect the order of growth of a process

## Properties of Orders of Growth

## Constants: Constant terms do not affect the order of growth of a process

 $\Theta(n)$
## Properties of Orders of Growth

## Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n)
$$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
$$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
$$

Logarithms: The base of a logarithm does not affect the order of growth of a process

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process $\Theta\left(\log _{2} n\right)$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process

$$
\Theta\left(\log _{2} n\right) \quad \Theta\left(\log _{10} n\right)
$$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
$$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
$$

Logarithms: The base of a logarithm does not affect the order of growth of a process

$$
\Theta\left(\log _{2} n\right) \quad \Theta\left(\log _{10} n\right) \quad \Theta(\ln n)
$$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
    def overlap(a, b):
        count = 0
        for item in a:
            if item in b:
                count += 1
        return count
```


## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
    def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
            if item in b:
            count += 1
        return count
```


## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
    def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
            if item in b: Inner: length of b
        return count
```


## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
        if item in b: Inner: length of b
        return count
```

If a and b are both length n, then overlap takes $\Theta\left(n^{2}\right)$ steps

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
        if item in b:
            count += 1 Inner: length of b
        return count
```

If a and b are both length n, then overlap takes $\Theta\left(n^{2}\right)$ steps

Lower-order terms: The fastest-growing part of the computation dominates the total

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
        if item in b:
            count += 1 Inner: length of b
        return count
```

If a and b are both length n, then overlap takes $\Theta\left(n^{2}\right)$ steps

Lower-order terms: The fastest-growing part of the computation dominates the total

$$
\Theta\left(n^{2}\right)
$$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
$\Theta(n)$
$\Theta(500 \cdot n)$
$\Theta\left(\frac{1}{500} \cdot n\right)$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
        if item in b:
            count += 1 Inner: length of b
        return count
```

If a and b are both length n, then overlap takes $\Theta\left(n^{2}\right)$ steps

Lower-order terms: The fastest-growing part of the computation dominates the total

$$
\Theta\left(n^{2}\right) \quad \Theta\left(n^{2}+n\right)
$$

## Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

$$
\Theta(n) \quad \Theta(500 \cdot n) \quad \Theta\left(\frac{1}{500} \cdot n\right)
$$

Logarithms: The base of a logarithm does not affect the order of growth of a process
$\Theta\left(\log _{2} n\right)$
$\Theta\left(\log _{10} n\right)$
$\Theta(\ln n)$

Nesting: When an inner process is repeated for each step in an outer process, multiply the steps in the outer and inner processes to find the total number of steps

```
def overlap(a, b):
        count = 0
        for item in a: Outer: length of a
        if item in b:
            count += 1 Inner: length of b
        return count
```

If a and b are both length n, then overlap takes $\Theta\left(n^{2}\right)$ steps

Lower-order terms: The fastest-growing part of the computation dominates the total

$$
\Theta\left(n^{2}\right) \quad \Theta\left(n^{2}+n\right) \quad \Theta\left(n^{2}+500 \cdot n+\log _{2} n+1000\right)
$$

Comparing orders of growth ( n is the problem size)

Comparing orders of growth ( n is the problem size)

$$
\Theta\left(b^{n}\right)
$$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor

$$
\Theta\left(n^{2}\right)
$$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., overlap

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., overlap
Incrementing $n$ increases $R(n)$ by the problem size $n$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., overlap
Incrementing $n$ increases $R(n)$ by the problem size $n$
$\Theta(n)$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth. Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., overlap
Incrementing $n$ increases $R(n)$ by the problem size $n$
$\Theta(n) \quad$ Linear growth. E.g., slow factors or exp

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth. Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\Theta\left(n^{2}\right) \quad \begin{array}{l}
\text { Quadratic growth. E.g., overlap } \\
\\
\\
\\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} \\
\Theta(\sqrt{n})
\end{array} \quad \text { Linear growth. E.g., slow factors or exp }
\end{array}
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth. Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\Theta\left(n^{2}\right) \quad \begin{array}{l}
\text { Quadratic growth. E.g., overlap } \\
\\
\\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} \\
\Theta(\sqrt{n}) \quad \text { Linear growth. E.g., slow factors or exp }
\end{array} \\
\text { Square root growth. E.g., factors_fast }
\end{array}
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) & \text { Exponential growth. Recursive fib takes } \\
& \begin{array}{ll} 
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor }
\end{array} \\
\Theta\left(n^{2}\right) \quad \begin{array}{l}
\text { Quadratic growth. E.g., overlap } \\
\\
\\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n}
\end{array} \\
\Theta(\sqrt{n}) & \text { Linear growth. E.g., slow factors or exp } \\
\Theta(\log n)
\end{array}
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth. Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\Theta\left(n^{2}\right) \quad \begin{array}{l}
\text { Quadratic growth. E.g., overlap } \\
\\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} \\
\Theta(n) \quad \text { Linear growth. E.g., slow factors or exp } \\
\Theta(\sqrt{n}) \quad \text { Square root growth. E.g., factors_fast } \\
\Theta(\log n) \quad \text { Logarithmic growth. E.g., exp_fast }
\end{array}, l
\end{array}
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth. Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\Theta\left(n^{2}\right) \quad \begin{array}{l}
\text { Quadratic growth. E.g., overlap } \\
\\
\\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} \\
\Theta(n) \quad \begin{array}{l}
\text { Linear growth. E.g., slow factors or exp }
\end{array} \\
\Theta(\sqrt{n}) \quad \begin{array}{l}
\text { Square root growth. E.g., factors_fast }
\end{array} \\
\Theta(\log n) \quad \begin{array}{l}
\text { Logarithmic growth. E.g., exp_fast }
\end{array} \\
\\
\text { Doubling the problem only increments } \mathrm{R}(\mathrm{n}) .
\end{array}
\end{array}
$$

Comparing orders of growth ( n is the problem size)

```
    \Theta(b}\mp@subsup{}{}{n})\quad\mathrm{ Exponential growth. Recursive fib takes
                            \Theta(\mp@subsup{\phi}{}{n})\mathrm{ steps, where }\phi=\frac{1+\sqrt{}{5}}{2}\approx1.61828
    Incrementing the problem scales R(n) by a factor
    \Theta( n
    Incrementing n increases R(n) by the problem size n
    \Theta(n) Linear growth. E.g., slow factors or exp
    \Theta(\sqrt{}{n})\quad\mathrm{ Square root growth. E.g., factors_fast}
\Theta(log}n) Logarithmic growth. E.g., exp_fas
    Doubling the problem only increments R(n).
    \Theta(1)
```

Comparing orders of growth ( n is the problem size)

```
    \Theta(b}\mp@subsup{}{}{n})\quad\mathrm{ Exponential growth. Recursive fib takes
                            \Theta(\mp@subsup{\phi}{}{n})\mathrm{ steps, where }\phi=\frac{1+\sqrt{}{5}}{2}\approx1.61828
    Incrementing the problem scales R(n) by a factor
    \Theta(n' 2) Quadratic growth. E.g., overlap
    Incrementing n increases R(n) by the problem size n
    \Theta(n) Linear growth. E.g., slow factors or exp
\Theta ( \sqrt { n } ) \quad \text { Square root growth. E.g., factors_fast}
\Theta(log}n) Logarithmic growth. E.g., exp_fas
    Doubling the problem only increments R(n).
    \Theta(1) Constant. The problem size doesn't matter
```

Comparing orders of growth ( n is the problem size)

| $\Theta\left(b^{n}\right)$ | Exponential growth. Recursive fib takes <br> $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$ <br> Incrementing the problem scales $\mathrm{R}(\mathrm{n})$ by a factor |
| :--- | :--- |
| $\Theta\left(n^{2}\right)$ | Quadratic growth. E.g., overlap <br> Incrementing n increases $\mathrm{R}(\mathrm{n})$ by the problem size n |
| $\Theta(n)$ | Linear growth. E.g., slow factors or exp |
| $\Theta(\sqrt{n})$ | Square root growth. E.g., factors_fast |

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right)$
$\Theta\left(n^{2}\right)$
$\Theta\left(\begin{array}{l}\text { Exponential growth. Recursive fib takes } \\
\\
\text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor } \\
\text { Quadratic growth. E.g., overlap } \\
\text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n}\end{array}\right.$
$\Theta(\sqrt{n})$

$\Theta(\log n)$ | Linear growth. E.g., slow factors or expLogarithmic growth. E.g., exp_fast |
| :--- |
| $\Theta(1)$ |

