61A Extra Lecture 1

Announcements

If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post
Only for people who really want extra work that's beyond the scope of normal CS 61A
Anyone is welcome to attend the extra lectures, whether or not they enroll
Permanent lecture times are TBD, but probably Wednesday evening or Monday evening

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a} . (We're solving the equation $x^2 = a$.)

Newton's Method

Using Newton's Method

How to find the square root of 2?

How to find the cube root of 729?

Iterative Improvement

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:
$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$
 (Demo)

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Implementing Newton's Method

(Demo)

Extensions

Approximate Differentiation

Differentiation can be performed symbolically or numerically

 $f(x) = x^{2} - 16$ f'(x) = 2x f'(2) = 4 $f'(x) = \lim_{a \to 0} \frac{f(x+a) - f(x)}{a}$

$$f'(x) pprox rac{f(x+a) - f(x)}{a}$$
 (if a is small)

(Demo)

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is ${\tt 0}$

(Demo)

The inverse $f^{-1}(y)$ of a differentiable, one-to-one function computes the value x such that f(x) = y

(Demo)

http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg