

Announcements
If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post
-Only for people who really want extra work that's beyond the scope of normal CS 61A Anyone is welcome to attend the extra lectures, whether or not they enroll Permanent lecture times are TBD, but probably Wednesday evening or Monday evening


## Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!


Application: a method for computing square roots, cube roots, etc
The positive zero of $f(x)=x^{2}-a$ is $\sqrt{a}$. (We're solving the equation $x^{2}=a$.)

## Using Newton's Method

How to find the square root of 2 ?


How to find the cube root of 729 ?


Special Case: Square Roots
How to compute square_root(a)
Idea: Iteratively refine a guess $x$ about the square root of a

$$
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2}
$$

(Demo) Babylonian Method

## Implementation questions

What guess should start the computation?
How do we know when we are finished?

## Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

$$
\text { Update: } \quad x=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

## Implementation questions

What guess should start the computation?
How do we know when we are finished?


## Approximate Differentiation

Differentiation can be performed
symbolically or numerically
$f(x)=x^{2}-16$
$f^{\prime}(x)=2 x$
$f^{\prime}(2)=4$
$f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}$
$f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad$ (if $a$ is small)
(Demo)


Critical Points and Inverses
Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0
(Demo)

The inverse $\mathrm{f}^{-1}(\mathrm{y})$ of a differentiable, one-to-one function computes the value $x$ such that $f(x)=y$
(Demo

