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• If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

§ Only for people who really want extra work that's beyond the scope of normal CS 61A

• Anyone is welcome to attend the extra lectures, whether or not they enroll

• Permanent lecture times are TBD, but probably Wednesday evening or Monday evening
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Quickly finds accurate approximations to zeroes of differentiable functions!
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f(x) = x2 - 2
A "zero" of a function f is 
an input x such that f(x)=0

Application: a method for computing square roots, cube roots, etc.

The positive zero of f(x) = x2 - a is    . (We're solving the equation x2 = a.)

x=1.414213562373095
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>>> dg = lambda x: 3*x*x 

>>> find_zero(g, dg) 
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Using Newton's Method

>>> f  = lambda x: x*x - 2 

>>> df = lambda x: 2*x 

>>> find_zero(f, df) 

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

>>> g  = lambda x: x*x*x - 729 

>>> dg = lambda x: 3*x*x 

>>> find_zero(g, dg) 

9.0

 f(x) = x2 - 2 
f'(x) = 2x

 g(x) = x3 - 729 
g'(x) = 3x2
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