
61A Extra Lecture 1

Announcements

2

Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

2

Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

§ Only for people who really want extra work that's beyond the scope of normal CS 61A

2

Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

§ Only for people who really want extra work that's beyond the scope of normal CS 61A

• Anyone is welcome to attend the extra lectures, whether or not they enroll

2

Announcements

• If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

§ Only for people who really want extra work that's beyond the scope of normal CS 61A

• Anyone is welcome to attend the extra lectures, whether or not they enroll

• Permanent lecture times are TBD, but probably Wednesday evening or Monday evening

2

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

f(x) = x2 - 2

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

x=1.414213562373095

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

Application: a method for computing square roots, cube roots, etc.

x=1.414213562373095

4

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

-5 -2.5 0 2.5 5

-2.5

2.5

f(x) = x2 - 2
A "zero" of a function f is
an input x such that f(x)=0

Application: a method for computing square roots, cube roots, etc.

The positive zero of f(x) = x2 - a is . (We're solving the equation x2 = a.)

x=1.414213562373095

�
�

4

Newton's Method

Given a function f and initial guess x,

5

Newton's Method

Given a function f and initial guess x,

5

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Given a function f and initial guess x,

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Given a function f and initial guess x,

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

�� ���)
�����

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

�� ���)
�����

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Length from 0:
-f(x)

�� ���)
�����

5

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

�� ���)
�����

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

�� ���)
�����

Repeatedly improve x:

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

�� ���)
�����

Repeatedly improve x:

Finish when f(x) = 0 (or close enough)

Newton's Method

Compute the value of f
at the guess: f(x)

Compute the derivative
of f at the guess: f'(x)

Update guess x to be:

Given a function f and initial guess x,

Current point:
(x, f(x))

Change to x:
-f(x)/f'(x)

Length from 0:
-f(x)

�� ���)
�����

5

Slope of this
tangent line

is f'(x)

Zero of
tangent
line:

�� ���)
�����

http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Repeatedly improve x:

Finish when f(x) = 0 (or close enough)

Using Newton's Method

6

Using Newton's Method

How to find the square root of 2?

6

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

6

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

6

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

 f(x) = x2 - 2
f'(x) = 2x

6

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

 f(x) = x2 - 2
f'(x) = 2x

6

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

 f(x) = x2 - 2
f'(x) = 2x

6

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

 f(x) = x2 - 2
f'(x) = 2x

6

3
p
V

V

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

>>> g = lambda x: x*x*x - 729

>>> dg = lambda x: 3*x*x

>>> find_zero(g, dg)

9.0

 f(x) = x2 - 2
f'(x) = 2x

6

3
p
V

V

Applies Newton's method

Using Newton's Method

>>> f = lambda x: x*x - 2

>>> df = lambda x: 2*x

>>> find_zero(f, df)

1.4142135623730951

How to find the square root of 2?

How to find the cube root of 729?

>>> g = lambda x: x*x*x - 729

>>> dg = lambda x: 3*x*x

>>> find_zero(g, dg)

9.0

 f(x) = x2 - 2
f'(x) = 2x

 g(x) = x3 - 729
g'(x) = 3x2

6

3
p
V

V

Applies Newton's method

Iterative Improvement

Special Case: Square Roots

8

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

8

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

8

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

8

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

Babylonian Method

8

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

Babylonian Method

8

(Demo)

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Implementation questions:

Update:

Babylonian Method

8

(Demo)

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

Implementation questions:

Update:

Babylonian Method

8

(Demo)

� =
�+ �

�
�

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

Babylonian Method

8

(Demo)

Special Case: Cube Roots

9

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

9

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

9

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

9

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

9

(Demo)

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Implementation questions:

Update:

9

(Demo)

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

Implementation questions:

Update:

9

(Demo)

� =
� · �+ �

��

�

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

9

(Demo)

Implementing Newton's Method

(Demo)

Extensions

Approximate Differentiation

12

Approximate Differentiation

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

f

0(x) ⇡ f(x+ a)� f(x)

a

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

f

0(x) ⇡ f(x+ a)� f(x)

a

(if 𝑎 is small)

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

f

0(x) ⇡ f(x+ a)� f(x)

a

(if 𝑎 is small)

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

f

0(x) ⇡ f(x+ a)� f(x)

a

(if 𝑎 is small)

Approximate Differentiation

Differentiation can be performed
symbolically or numerically

f(x) = x2 - 16

f'(x) = 2x

f'(2) = 4

12

f

0(x) = lim
a!0

f(x+ a)� f(x)

a

f

0(x) ⇡ f(x+ a)� f(x)

a

(if 𝑎 is small)

(Demo)

Critical Points and Inverses

13

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0

13

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0

13http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0

13http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg

(Demo)

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0

13http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg

The inverse f-1(y) of a differentiable, one-to-one function computes the
value x such that f(x) = y

(Demo)

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur
when the derivative is 0

13http://upload.wikimedia.org/wikipedia/commons/f/fd/Stationary_vs_inflection_pts.svg

The inverse f-1(y) of a differentiable, one-to-one function computes the
value x such that f(x) = y

(Demo)

(Demo)

