61A Extra Lecture 1

Announcements

Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post

Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post
"Only for people who really want extra work that's beyond the scope of normal CS 61A

Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post
"Only for people who really want extra work that's beyond the scope of normal CS 61A
- Anyone is welcome to attend the extra lectures, whether or not they enroll

Announcements

- If you want 1 unit (pass/no pass) of credit for this CS 98, stay tuned for a Piazza post
"Only for people who really want extra work that's beyond the scope of normal CS 61A
- Anyone is welcome to attend the extra lectures, whether or not they enroll
- Permanent lecture times are TBD, but probably Wednesday evening or Monday evening

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

$$
f(x)=x^{2}-2
$$

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.
The positive zero of $f(x)=x^{2}-a$ is \sqrt{a}. (We're solving the equation $x^{2}=a$.)

Newton's Method

Given a function f and initial guess x,

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f^{\prime}(x)$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Finish when $f(x)=0$ (or close enough)

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Finish when $f(x)=0$ (or close enough)

Using Newton's Method

Using Newton's Method

How to find the square root of 2 ?

Using Newton's Method

How to find the square root of 2 ?

$$
\begin{aligned}
& \text { >>> f }=\text { lambda x: x*x - } 2 \\
& \text { >>> df = lambda x: } 2 * x \\
& \text { >> find_zero(f, df) } \\
& 1.4142135623730951
\end{aligned}
$$

Using Newton's Method

How to find the square root of 2 ?

> >>> f $=$ lambda $x: ~ x * x-2$
> \ggg df $=$ lambda x: $2 * x$
> \ggg find_zero(f, df)
> 1.4142135623730951

Using Newton's Method

How to find the square root of 2 ?

$\begin{array}{ll}\text { >>> } f=l a m b d a ~ & x: x * x-2 \\ \text { >>> } d f=l a m b d a ~ & x: \\ \text { >> } & 2 * x\end{array} \quad \begin{aligned} & f(x)=x^{2}-2 \\ & f^{\prime}(x)=2 x\end{aligned}$
>>> find_zero(f, df)
1.4142135623730951

Using Newton's Method

How to find the square root of 2 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Iterative Improvement

Special Case: Square Roots

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

Update:

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\text { Update: } \quad X=\frac{X+\frac{a}{x}}{2}
$$

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2}
$$

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\begin{equation*}
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2} \tag{Demo}
\end{equation*}
$$

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\begin{equation*}
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2} \tag{Demo}
\end{equation*}
$$

Implementation questions:

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\begin{equation*}
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2} \tag{Demo}
\end{equation*}
$$

Babylonian Method

Implementation questions:

What guess should start the computation?

Special Case: Square Roots

How to compute square_root(a)
Idea: Iteratively refine a guess x about the square root of a

$$
\begin{equation*}
\text { Update: } \quad x=\frac{x+\frac{a}{x}}{2} \tag{Demo}
\end{equation*}
$$

Babylonian Method

Implementation questions:

What guess should start the computation?
How do we know when we are finished?

Special Case: Cube Roots

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Update:

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

$$
\text { Update: } \quad X=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

$$
\begin{equation*}
\text { Update: } \quad X=\frac{2 \cdot x+\frac{a}{x^{2}}}{3} \tag{Demo}
\end{equation*}
$$

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

$$
\begin{equation*}
\text { Update: } \quad X=\frac{2 \cdot x+\frac{a}{x^{2}}}{3} \tag{Demo}
\end{equation*}
$$

Implementation questions:

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Implementation questions:

What guess should start the computation?

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Implementation questions:

What guess should start the computation?
How do we know when we are finished?

Implementing Newton's Method

Extensions

Approximate Differentiation

Approximate Differentiation

Approximate Differentiation

Differentiation can be performed symbolically or numerically

Approximate Differentiation

Differentiation can be performed symbolically or numerically
$f(x)=x^{2}-16$

Approximate Differentiation

Differentiation can be performed symbolically or numerically
$f(x)=x^{2}-16$
$f^{\prime}(x)=2 x$

Approximate Differentiation

Differentiation can be performed symbolically or numerically
$f(x)=x^{2}-16$
$f^{\prime}(x)=2 x$
$f^{\prime}(2)=4$

Approximate Differentiation

Differentiation can be performed symbolically or numerically
$f(x)=x^{2}-16$
$f^{\prime}(x)=2 x$
$f^{\prime}(2)=4$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a}
$$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad(\text { if } a \text { is small })
$$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad(\text { if } a \text { is small })
$$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
\left.f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad \text { (if } a \text { is small }\right)
$$

Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad(\text { if } a \text { is small })
$$

Critical Points and Inverses

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0
(Demo)

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

```
(Demo)
```

The inverse $\mathrm{f}^{-1}(\mathrm{y})$ of a differentiable, one-to-one function computes the value x such that $f(x)=y$

Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

```
(Demo)
```

The inverse $\mathrm{f}^{-1}(\mathrm{y})$ of a differentiable, one-to-one function computes the value x such that $f(x)=y$

