
61A Extra Lecture 7



Announcements



Prefix Trees



All Words That Share a Prefix

4Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

add: Follow a path from the root using a word, adding 
branches for each new letter until the end is reached

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

add: Follow a path from the root using a word, adding 
branches for each new letter until the end is reached

Example: "JANET"

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

add: Follow a path from the root using a word, adding 
branches for each new letter until the end is reached

Example: "JANET"

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

add: Follow a path from the root using a word, adding 
branches for each new letter until the end is reached

Example: "JANET"

T
Terminal

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



All Words That Share a Prefix

4

A prefix tree (or just "trie") indexes words by prefix

lookup: Follow a path from the root using a prefix, 
then enumerate everything below the resulting node

Example: "JO"

add: Follow a path from the root using a word, adding 
branches for each new letter until the end is reached

Example: "JANET"

T
Terminal

(Demo)

Image: http://www.codeproject.com/Articles/18033/Phone-Directory-Implementation-Using-TRIE



Flask



The Flask Web Framework

6



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

6



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6

Web browser Web server

TCP Initialization Handshake



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6

HTTP GET request of content

Web browser Web server

TCP Initialization Handshake



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6

HTTP GET request of content

HTTP response with content

Web browser Web server

TCP Initialization Handshake



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6

HTTP GET request of content

HTTP response with content

Follow-up requests for auxiliary content
...

Web browser Web server

TCP Initialization Handshake



The Flask Web Framework

Translates HTTP requests (described in a future lecture) to Python function calls

Manages data exchange between a browser and a Python program

6

(Demo)

HTTP GET request of content

HTTP response with content

Follow-up requests for auxiliary content
...

Web browser Web server

TCP Initialization Handshake



Threads



Threads

8



Threads

A thread executes a function call

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

Thread(target=<function>, args=<args>): Create (but do not start) a thread of execution

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

Thread(target=<function>, args=<args>): Create (but do not start) a thread of execution

.start(): Start the function call, but do not wait for it to complete

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

Thread(target=<function>, args=<args>): Create (but do not start) a thread of execution

.start(): Start the function call, but do not wait for it to complete

.join(): Wait for the function call to complete (return value is ignored)

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

Thread(target=<function>, args=<args>): Create (but do not start) a thread of execution

.start(): Start the function call, but do not wait for it to complete

.join(): Wait for the function call to complete (return value is ignored)

.run(): Start the function call and wait for it to complete

8



Threads

A thread executes a function call

Multiple threads can execute different calls simultaneously

For high-latency operations such as web requests, threading can increase speed enormously

Thread(target=<function>, args=<args>): Create (but do not start) a thread of execution

.start(): Start the function call, but do not wait for it to complete

.join(): Wait for the function call to complete (return value is ignored)

.run(): Start the function call and wait for it to complete

8

(Demo)



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x = 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

do_something() 
y = x 
do_something() 
x = y * 2

x = 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 20 
y: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 11 
z: 10

x: 11 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 11 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 10 
y: 10 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Shared State and Race Conditions

When multiple threads make changes to the same object, the result can be unpredictable

9

x: 10

do_something() 
y = x 
do_something() 
x = y * 2

do_something() 
z = x 
do_something() 
x = z + 1

x = 10 x: 10 
y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 10 
y: 10 
z: 10

x: 11 
z: 10

x: 10 
y: 10 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 20 
y: 10 
z: 10

x: 11 
y: 10 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10



Locks and Critical Sections

A critical section is a sequence of statements that should be executed atomically 

10



Locks and Critical Sections

A critical section is a sequence of statements that should be executed atomically 

10

x = 10 
s = Lock()



Locks and Critical Sections

A critical section is a sequence of statements that should be executed atomically 

10

do_something() 
s.acquire() 
y = x 
do_something() 
x = y * 2 
s.release()

x = 10 
s = Lock()



Locks and Critical Sections

A critical section is a sequence of statements that should be executed atomically 

10

do_something() 
s.acquire() 
y = x 
do_something() 
x = y * 2 
s.release()

do_something() 
s.acquire() 
z = x 
do_something() 
x = z + 1 
s.release()

x = 10 
s = Lock()



Locks and Critical Sections

A critical section is a sequence of statements that should be executed atomically 

10

do_something() 
s.acquire() 
y = x 
do_something() 
x = y * 2 
s.release()

do_something() 
s.acquire() 
z = x 
do_something() 
x = z + 1 
s.release()

x = 10 
s = Lock() x: 10 x: 10 

y: 10

x: 10 
z: 10

x: 20 
y: 10 
z: 20

x: 20 
y: 10

x: 21 
y: 10 
z: 20

x: 11 
z: 10

x: 11 
y: 11 
z: 10

x: 22 
y: 11 
z: 10


