
Lazy Evaluation Announcements

Promises

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

The delay construct is used together with the procedure force to implement lazy evaluation
or call by need. (delay <expression>) returns an object called a promise which at some
point in the future may be asked (by the force procedure) to evaluate <expression>, and
deliver the resulting value...

(force <promise>)

Forces the value of promise...

!4

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

A Promise Can Be Represented as Function

A delayed expression can be captured along with the current environment using a lambda

E.g., (let ((p (lambda () (+ 1 2)))) (list (p) (p)))

!5

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

(Demo)
Assignment and Caching

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

scm> (define x 2)
x
scm> (set! x 3)
okay
scm> x
3

Local, non-local, and global assignment all use set!

(define (sum a b)
 (let ((total 0))
 (define (iter x)
 (if (< x b)
 (begin
 (set! total (+ total x))
 (iter (+ x 1)))))
 (iter a)
 total))

def sum(a, b):
 total = 0
 def iter(x):
 nonlocal total
 if x < b:
 total = total + x
 iter(x + 1)
 iter(a)
 return total

Force Caches the Promise Value

From the Revised5 Report on the Algorithmic Language Scheme

(force <promise>)

Forces the value of promise. If no value has been computed for the promise, then a value is
computed and returned. The value of the promise is cached (or "memoized") so that if it is
forced a second time, the previously computed value is returned.

!8

scm> (define x 2)
x
scm> (let ((p (delay (set! x (+ x 1))))) (begin (force p) (force p)))
okay
scm> x
3
scm

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin
 (set! result-ready? #t)
 (set! result x)
 result))))))))

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

If not,  
cache the value

Meta-Circular Evaluator

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

• Logic language (next week)

• The syntactic structure of an English sentence (demo)

• Variations of Scheme

!11

Lazy Evaluator

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

When an if expression is evaluated:

• Predicate: Must be fully evaluated to determine which sub-expression to evaluate next

• Consequent/Alternative: Is evaluated, but call expressions within it are eval'd lazily

!13

(Demo)

