
Lazy Evaluation

Announcements

Promises

Delay Creates a Promise

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

The delay construct is used together with the procedure force to implement lazy evaluation
or call by need. (delay <expression>) returns an object called a promise which at some
point in the future may be asked (by the force procedure) to evaluate <expression>, and
deliver the resulting value...

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

The delay construct is used together with the procedure force to implement lazy evaluation
or call by need. (delay <expression>) returns an object called a promise which at some
point in the future may be asked (by the force procedure) to evaluate <expression>, and
deliver the resulting value...

(force <promise>)

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

The delay construct is used together with the procedure force to implement lazy evaluation
or call by need. (delay <expression>) returns an object called a promise which at some
point in the future may be asked (by the force procedure) to evaluate <expression>, and
deliver the resulting value...

(force <promise>)

Forces the value of promise...

!4

Delay Creates a Promise

From the Revised5 Report on the Algorithmic Language Scheme

(delay <expression>)

The delay construct is used together with the procedure force to implement lazy evaluation
or call by need. (delay <expression>) returns an object called a promise which at some
point in the future may be asked (by the force procedure) to evaluate <expression>, and
deliver the resulting value...

(force <promise>)

Forces the value of promise...

!4

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

A Promise Can Be Represented as Function

!5

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

A Promise Can Be Represented as Function

A delayed expression can be captured along with the current environment using a lambda

!5

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

A Promise Can Be Represented as Function

A delayed expression can be captured along with the current environment using a lambda

E.g., (let ((p (lambda () (+ 1 2)))) (list (p) (p)))

!5

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

A Promise Can Be Represented as Function

A delayed expression can be captured along with the current environment using a lambda

E.g., (let ((p (lambda () (+ 1 2)))) (list (p) (p)))

!5

(force (delay (+ 1 2))) ⇒ 3
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

(Demo)

Assignment and Caching

Assignment in Scheme

!7

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

scm> (define x 2)
x
scm> (set! x 3)
okay
scm> x
3

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

scm> (define x 2)
x
scm> (set! x 3)
okay
scm> x
3

Local, non-local, and global assignment all use set!

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

scm> (define x 2)
x
scm> (set! x 3)
okay
scm> x
3

Local, non-local, and global assignment all use set!

(define (sum a b)
 (let ((total 0))
 (define (iter x)
 (if (< x b)
 (begin
 (set! total (+ total x))
 (iter (+ x 1)))))
 (iter a)
 total))

Assignment in Scheme

The built-in set! special form changes the value of an existing variable

!7

scm> (define x 2)
x
scm> (set! x 3)
okay
scm> x
3

Local, non-local, and global assignment all use set!

(define (sum a b)
 (let ((total 0))
 (define (iter x)
 (if (< x b)
 (begin
 (set! total (+ total x))
 (iter (+ x 1)))))
 (iter a)
 total))

def sum(a, b):
 total = 0
 def iter(x):
 nonlocal total
 if x < b:
 total = total + x
 iter(x + 1)
 iter(a)
 return total

Force Caches the Promise Value

!8

Force Caches the Promise Value

From the Revised5 Report on the Algorithmic Language Scheme

!8

Force Caches the Promise Value

From the Revised5 Report on the Algorithmic Language Scheme

(force <promise>)

!8

Force Caches the Promise Value

From the Revised5 Report on the Algorithmic Language Scheme

(force <promise>)

Forces the value of promise. If no value has been computed for the promise, then a value is
computed and returned. The value of the promise is cached (or "memoized") so that if it is
forced a second time, the previously computed value is returned.

!8

Force Caches the Promise Value

From the Revised5 Report on the Algorithmic Language Scheme

(force <promise>)

Forces the value of promise. If no value has been computed for the promise, then a value is
computed and returned. The value of the promise is cached (or "memoized") so that if it is
forced a second time, the previously computed value is returned.

!8

scm> (define x 2)
x
scm> (let ((p (delay (set! x (+ x 1))))) (begin (force p) (force p)))
okay
scm> x
3
scm

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)

Takes a zero-argument lambda procedure
with the delayed expression as its body

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)

Takes a zero-argument lambda procedure
with the delayed expression as its body

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))

Takes a zero-argument lambda procedure
with the delayed expression as its body

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()

Takes a zero-argument lambda procedure
with the delayed expression as its body

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin
 (set! result-ready? #t)

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin
 (set! result-ready? #t)
 (set! result x)

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin
 (set! result-ready? #t)
 (set! result x)

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

If not,  
cache the value

Caching Promise

Assignment is required in order to cache the value of a promise (from R5RS)

!9

(define make-promise
 (lambda (proc)
 (let ((result-ready? #f)
 (result #f))
 (lambda ()
 (if result-ready?
 result
 (let ((x (proc)))
 (if result-ready?
 result
 (begin
 (set! result-ready? #t)
 (set! result x)
 result))))))))

Takes a zero-argument lambda procedure
with the delayed expression as its body

Returns a zero-argument lambda procedure
that caches the value of proc

Evaluates proc and
gives it a local name

Did (proc) get cached
while evaluating (proc)?

If not,  
cache the value

Meta-Circular Evaluator

A Scheme Evaluator in Scheme

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

• Logic language (next week)

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

• Logic language (next week)

• The syntactic structure of an English sentence (demo)

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

• Logic language (next week)

• The syntactic structure of an English sentence (demo)

• Variations of Scheme

!11

A Scheme Evaluator in Scheme

Lots of different programming languages can be expressed using nested combinations

• Scheme

• Scheme-syntax calculator

• Logic language (next week)

• The syntactic structure of an English sentence (demo)

• Variations of Scheme

!11

Lazy Evaluator

Lazy Evaluation

!13

Lazy Evaluation

When a procedure is applied:

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

When an if expression is evaluated:

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

When an if expression is evaluated:

• Predicate: Must be fully evaluated to determine which sub-expression to evaluate next

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

When an if expression is evaluated:

• Predicate: Must be fully evaluated to determine which sub-expression to evaluate next

• Consequent/Alternative: Is evaluated, but call expressions within it are eval'd lazily

!13

Lazy Evaluation

When a procedure is applied:

• Primitive: The arguments are evaluated and the primitive procedure is applied to them

• User-Defined: All arguments are delayed

When an if expression is evaluated:

• Predicate: Must be fully evaluated to determine which sub-expression to evaluate next

• Consequent/Alternative: Is evaluated, but call expressions within it are eval'd lazily

!13

(Demo)

