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(force (delay (+ 1 2))) ⇒ 3 
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)
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A Promise Can Be Represented as Function

A delayed expression can be captured along with the current environment using a lambda

E.g., (let ((p (lambda () (+ 1 2)))) (list (p) (p)))
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(force (delay (+ 1 2))) ⇒ 3 
(let ((p (delay (+ 1 2)))) (list (force p) (force p))) ⇒ (3 3)

(Demo)
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Assignment in Scheme

The built-in set! special form changes the value of an existing variable
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scm> (define x 2) 
x 
scm> (set! x 3) 
okay 
scm> x 
3

Local, non-local, and global assignment all use set!

(define (sum a b) 
  (let ((total 0)) 
    (define (iter x) 
      (if (< x b) 
          (begin 
           (set! total (+ total x)) 
           (iter (+ x 1))))) 
    (iter a) 
    total)) 

def sum(a, b): 
    total = 0 
    def iter(x): 
        nonlocal total 
        if x < b: 
            total = total + x 
            iter(x + 1) 
    iter(a) 
    return total 
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From the Revised5 Report on the Algorithmic Language Scheme

(force <promise>)

Forces the value of promise. If no value has been computed for the promise, then a value is 
computed and returned. The value of the promise is cached (or "memoized") so that if it is 
forced a second time, the previously computed value is returned.
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scm> (define x 2) 
x 
scm> (let ((p (delay (set! x (+ x 1))))) (begin (force p) (force p))) 
okay 
scm> x 
3 
scm
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