CS 61A Orders of Growth \& Linked Lists Spring 2018
 Discussion 6: March 7, 2018

1 Warmup

What is the order of growth for the following functions? Answer in terms of Θ (for example, $\Theta(n)$).
1.1

```
def fib_iter(n):
    prev, curr, i = 0, 1, 0
    while i < n:
            prev, curr = curr, prev + curr
            i += 1
        return prev
1.2 def fib_recursive(n):
        if n == 0 or n == 1:
            return n
        else:
            return fib_recursive(n - 1) + fib_recursive(n - 2)
```

1.3 Write a function that takes in a a linked list and returns the sum of all its elements. You may assume all elements in lnk are integers.

```
def sum_nums(lnk):
    """
    >>> a = Link(1, Link(6, Link(7)))
    >>> sum_nums(a)
    14
    """
```


2 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following: as the size of the input grows, how does the runtime of the function change? And what do we mean by "runtime"?

- square(1) requires one primitive operation: * (multiplication). square(100) also requires one. No matter what input n we pass into square, it always takes one operation.

input	function call	return value	number of operations
1	square(1)	$1 \cdot 1$	1
2	square(2)	$2 \cdot 2$	1
\vdots	\vdots	\vdots	\vdots
100	square(100)	$100 \cdot 100$	1
\vdots	\vdots	\vdots	\vdots
n	square (n)	$n \cdot n$	1

- factorial(1) requires one multiplication, but factorial(100) requires 100 multiplications. As we increase the input size of n, the runtime (number of operations) increases linearly proportional to the input.

input	function call	return value	number of operations
1	factorial(1)	$1 \cdot 1$	1
2	factorial(2)	$2 \cdot 1 \cdot 1$	2
\vdots	\vdots	\vdots	\vdots
100	factorial(100)	$100 \cdot 99 \cdots 1 \cdot 1$	100
\vdots	\vdots	\vdots	\vdots
n	factorial (n)	$n \cdot(n-1) \cdots 1 \cdot 1$	n

For expressing complexity, we use what is called big Θ (Theta) notation. For example, if we say the running time of a function foo is in $\Theta\left(n^{2}\right)$, we mean that the running time of the process will grow proportionally with the square of the size of the input as it increases to infinity.

- Ignore lower order terms: If a function requires $n^{3}+3 n^{2}+5 n+10$ operations with a given input n, then the runtime of this function is $\Theta\left(n^{3}\right)$. As n gets larger, the lower order terms (10,5n, and $3 n^{2}$) all become insignificant compared to n^{3}.
- Ignore constants: If a function requires $5 n$ operations with a given input n, then the runtime of this function is $\Theta(n)$. We are only concerned with how the runtime grows asymptotically with the input, and since 5 n is still asymptotically linear; the constant factor does not make a difference in runtime analysis.

Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

- $\Theta(1)$ - constant time takes the same amount of time regardless of input size
- $\Theta(\log n)$ - logarithmic time
- $\Theta(n)$ - linear time
- $\Theta(n \log n)$ - linearithmic time
- $\Theta\left(n^{2}\right), \Theta\left(n^{3}\right)$, etc. - polynomial time
- $\Theta\left(2^{n}\right), \Theta\left(3^{n}\right)$, etc. - exponential time (considered "intractable"; these are really, really horrible)

In addition, some programs will never terminate if they get stuck in an infinite loop.

Questions

What is the order of growth for the following functions?

```
def sum_of_factorial(n):
    if n == 0:
        return 1
    else:
        return factorial(n) + sum_of_factorial(n - 1)
```

def $\operatorname{bonk}(n):$
total $=0$
while $n>=2$:
total += n
$\mathrm{n}=\mathrm{n} / 2$
return total
def mod_7(n):
if $\mathrm{n} \% 7==0$:
return 0
else:
return $1+\bmod _{-} 7(n-1)$
def $\operatorname{bar}(n)$:
if $n \% 2=1$:
return $n+1$
return n
def foo(n):
if $\mathrm{n}<1$:
return 2
if $\mathrm{n} \% 2=0$:
return foo $(\mathrm{n}-1)+\mathrm{foo}(\mathrm{n}-2)$
else:
return $1+$ foo $(n-2)$

What is the order of growth of foo(bar(n))?

3 Linked Lists

There are many different implementations of sequences in Python. Today, we'll explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value and the rest of the linked list.

To check if a linked list is an empty linked list, compare it agains the class attribute Link.empty:

if link is Link.empty:

 print('This linked list is empty!')else:
print('This linked list is not empty!')

Implementation

class Link:

empty = ()
def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest
def __repr__(self):
if self.rest:
rest_str = ', ' + repr(self.rest)
else:
rest_str = '' return 'Link(\{0\}\{1\})'.format(repr(self.first), rest_str)
@property
def second(self):
return self.rest.first
@second.setter
def second(self, value):
self.rest.first = value
def __str__(self):
string = '<'
while self.rest is not Link.empty:
string += str(self.first) + ' '
self = self.rest
return string + str(self.first) + '>'

Questions

3.1 Write a function that takes in a Python list of linked lists and multiplies them element-wise. It should return a new linked list.

If not all of the Link objects are of equal length, return a linked list whose length is that of the shortest linked list given. You may assume the Link objects are shallow linked lists, and that lst_of_lnks contains at least one linked list.

```
def multiply_lnks(lst_of_lnks):
    """
    >>> a = Link(2, Link(3, Link(5)))
    >>> b = Link(6, Link(4, Link(2)))
    >>> c = Link(4, Link(1, Link(0, Link(2))))
    >>> p = multiply_lnks([a, b, c])
    >>> p.first
    48
    >>> p.rest.first
    12
    >>> p.rest.rest.rest
    ()
    """
```

3.2 Write a function that takes a sorted linked list of integers and mutates it so that all duplicates are removed.

```
def remove_duplicates(lnk):
    """
    >>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))
    >>> unique = remove_duplicates(lnk)
    >>> unique
    Link(1, Link(5))
    >> lnk
    Link(1, Link(5))
    """
```


4 Midterm Review

4.1 Write a function that takes a list and returns a new list that keeps only the evenindexed elements of lst and multiplies them by their corresponding index.

```
def even_weighted(lst):
    """
    >>> x = [1, 2, 3, 4, 5, 6]
    >>> even_weighted(x)
    [0, 6, 20]
    """
```

 return [
 \qquad]

The quicksort sorting algorithm is an efficient and commonly used algorithm to order the elements of a list. We choose one element of the list to be the pivot element and partition the remaining elements into two lists: one of elements less than the pivot and one of elements greater than the pivot. We recursively sort the two lists, which gives us a sorted list of all the elements less than the pivot and all the elements greater than the pivot, which we can then combine with the pivot for a completely sorted list.

First, implement the quicksort_list function. Choose the first element of the list as the pivot. You may assume that all elements are distinct.

```
def quicksort_list(lst):
    """
    >>> quicksort_list([3, 1, 4])
    [1, 3, 4]
    """
    if
```

\qquad

``` :
    pivot = lst[0]
    less =
```

\qquad

```
    greater =
```

\qquad

```
return
``` \(\qquad\)
4.3 Write a function that takes in a list and returns the maximum product that can be formed using nonconsecutive elements of the list. The input list will contain only numbers greater than or equal to 1 .
```

def max_product(lst):
"""Return the maximum product that can be formed using lst
without using any consecutive numbers
>>> max_product([10, 3,1,9,2]) \# 10 * 9
90
>>> max_product([5,10,5,10,5]) \# 5 * 5 * 5
125
>>> max_product([])
1
"""

```
4.4 An expression tree is a tree that contains a function for each non-leaf node, which can be either '+' or ' \(*\) '. All leaves are numbers. Implement eval_tree, which evaluates an expression tree to its value. You may want to use the functions sum and prod, which take a list of numbers and compute the sum and product respectively.
```

def eval_tree(tree):

```
"""Evaluates an expression tree with functions the root.
>>> eval_tree(tree(1))
1
>>> expr = tree('*', [tree(2), tree(3)])
>>> eval_tree(expr)
6
>>> eval_tree(tree('+', [expr, tree(4), tree(5)]))
15
"" "
4.5 Complete redundant_map, which takes a tree \(t\) and a function \(f\), and applies \(f\) to the node \(\left(2^{d}\right)\) times, where \(d\) is the depth of the node. The root has a depth of 0 .
```

def redundant_map(t, f):
"""
>>> double = lambda x: x*2
>>> tree = Tree(1, [Tree(1), Tree(2, [Tree(1, [Tree(1)])])])
>>> print_levels(redundant_map(tree, double))
[2] \# 1 * 2 ^ (1) ; Apply double one time
[4, 8] \# 1 * 2 ^ (2), 2 * 2 ^ (2) ; Apply double two times
[16] \# 1 * 2 ^ (2 ^ 2) ; Apply double four times
[256] \# 1 * 2 ^ (2 ^ 3) ; Apply double eight times
"""
t.label =

```
\(\qquad\)
```

new_f =

``` \(\qquad\)
```

t.branches =

``` \(\qquad\)
```

return t

```
```

