
CS 61A Scheme
Spring 2018 Discussion 7: March 21, 2018

1 Introduction
In the next part of the course, we will be working with the Scheme programming

language. In addition to learning how to write Scheme programs, we will eventually

write a Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back

to 1958. The popularity of Scheme within the programming language community

stems from its simplicity – in fact, previous versions of CS 61A were taught in the

Scheme language.

2 Primitives
Scheme has a set of atomic primitive expressions. Atomic means that these expres-

sions cannot be divided up.

scm> 123

123

scm> 123.123

123.123

scm> #t

True

scm> #f

False

Unlike in Python, the only primitive in Scheme that is a false value is #f and its

equivalents, false and False. The define special form defines variables and

procedures by binding a value to a variable, just like the assignment statement in

Python. When a variable is defined, the define special form returns a symbol of

its name. A procedure is what we call a function in Scheme!

The syntax to define a variable and procedure are:

• (define <variable name> <value>)

• (define (<function name> <parameters>) <function body>)

2 Scheme

Questions
2.1 What would Scheme display?

scm> (define a 1)

scm> a

scm> (define b a)

scm> b

scm> (define c 'a)

scm> c

3 Call Expressions
To call a function in Scheme, you first need a set of parentheses. Inside the paren-

theses, you specify an operator expression, then zero or more oprand subexpressions

(remember the spaces!).

Operators may be symbols, such as + and * or more complex expressions, as long

as they evaluate to procedure values.

scm> (- 1 1) ; 1 - 1

0

scm> (/ 8 4 2) ; 8 / 4 / 2

1

scm> (* (+ 1 2) (+ 1 2)) ; (1 + 2) * (1 + 2)

9

Evaluating a Scheme function call works just like Python:

1. Evaluate the operator (the first expression after the (), then evaluate each of

the operands.

2. Apply the operator to those evaluated operands.

When you evaluate (+ 1 2), you evaluate the + symbol, which is bound to a built-in

addition function. Then, you evaluate 1 and 2, which are primitives. Finally, you

apply the addition function to 1 and 2.

Scheme 3

Questions
3.1 What would Scheme display?

scm> (+ 1)

scm> (* 3)

scm> (+ (* 3 3) (* 4 4))

scm> (define a (define b 3))

scm> a

scm> b

4 Special Forms
There are certain expressions that look like function calls, but don’t follow the rule

for order of evaluation. These are called special forms. You’ve already seen one —

define, where the first argument, the variable name, doesn’t actually get evaluated

to a value.

4.1 If Expression
Another common special form is the if form. An if expression looks like:

(if <condition> <then> <else>)

where <condition>, <then> and <else> are expressions. First, <condition> is evalu-

ated. If it evaluates to #t, then <then> is evaluated. Otherwise, <else> is evaluated.

Remember that only #f is a false-y value (also False for our interpreter); everything

else is truth-y.

scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

4 Scheme

4.2 Boolean Operators
Much like Python, Scheme also has the boolean operators and, or, and not. In addi-

tion, and and or are also special forms because they are short-circuiting operators.

scm> (and 25 32)

32

scm> (or 1 2)

1

Questions
4.1 What would Scheme display?

scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)

4.3 Lambdas and Defining Functions
Scheme has lambdas too! The syntax is

(lambda (<PARAMETERS>) <EXPR>)

Like in Python, lambdas are function values. Also like in Python, when a lambda

expression is called in Scheme, a new frame is created where the parameters are

bound to the arguments passed in. Then, <EXPR> is evaluated in this new frame.

Note that <EXPR> is not evaluated until the lambda function is called.

Like in Python, lambda functions are also values! So you can do this to define

functions:

scm> (define (square x) (* x x)) ; Create function square using define special form

square

scm> (define square (lambda (x) (* x x))) ; Equivalently, bind the name square to a lambda function

square

scm> (square 4)

16

Scheme 5

let is another special form based around lambda. The structure of let is as follows:

(let ((<SYMBOL1> <EXPR1>)

...

(<SYMBOLN> <EXPRN>))

<BODY>)

This binds the results of evaluating expressions 1 through n to their associated

symbols, creating temporary variables. Finally, the body of the let is evaluated.

This special form is really just equivalent to:

((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

Think of the temporary variables as being the parameters of a lambda function.

Then, the arguments are the values of the expressions, which we bind to the tem-

porary variables by calling the lambda.

Consider the following example:

(let ((x 1)

(y 2))

(+ x y))

This is equivalent to:

((lambda (x y) (+ x y)) 1 2)

Questions
4.1 Write a function that returns the factorial of a number.

(define (factorial x)

4.2 Write a function that returns the nth Fibonacci number.

(define (fib n)

(if (or (= n 0) (= n 1))

n

6 Scheme

5 Pairs and Lists
To construct a (linked) list in Scheme, you can use the constructor cons (which

takes two arguments). nil represents the empty list. If you have a linked list in

Scheme, you can use selector car to get the first element and selector cdr to get the

rest of the list. (car and cdr don’t stand for anything anymore, but if you want the

history go to http://en.wikipedia.org/wiki/CAR and CDR).

scm> nil

()

scm> (null? nil)

#t

scm> (cons 2 nil)

(2)

scm> (cons 3 (cons 2 nil))

(3 2)

scm> (define a (cons 3 (cons 2 nil)))

a

scm> (car a)

3

scm> (cdr a)

(2)

scm> (car (cdr a))

2

scm> (define (len a)

(if (null? a)

0

(+ 1 (len (cdr a)))))

len

scm> (len a)

2

If a list is a “good looking” list, like the ones above where the second element is

always a linked list, we call it a well-formed list. Interestingly, in Scheme, the

second element does not have to be a linked list. You can supply something else

instead, creating a malformed list. The difference is shown with a dot:

scm> (cons 2 3)

(2 . 3)

scm> (cons 2 (cons 3 nil))

(2 3)

scm> (cdr (cons 2 3))

3

scm> (cdr (cons 2 (cons 3 nil)))

(3)

In general, the rule for displaying a pair is as follows: use the dot to separate the

car and cdr fields of a pair, but if the dot is immediately followed by an open

http://en.wikipedia.org/wiki/CAR_and_CDR

Scheme 7

parenthesis, then remove the dot and the parenthesis pair. Thus, (0 . (1 . 2))

becomes (0 1 . 2)

There are many useful operations and shorthands on lists. list takes zero or more

arguments and returns a list of its arguments.

This typically behaves much like quoting a list, except that quoting will not evaluate

the list you have quoted which can result in some different outcomes.

scm> (list 1 2 3)

(1 2 3)

scm> '(1 2 3)

(1 2 3)

scm> (car '(1 2 3))

1

scm> (equal? '(1 2 3) (list 1 2 3))

#t

scm> '(1 . (2 3))

(1 2 3)

scm> '(define (square x) (* x x))

(define (square x) (* x x))

scm> square ; We didn't actually define square above because of the quote

Error

scm> (list (cons 1 2))

((1 . 2))

scm> '((cons 1 2))

((cons 1 2))

=, eq?, equal?
• = can only be used for comparing numbers.

• eq? behaves like == in Python for comparing two non-pairs (numbers, booleans,

etc.). Otherwise, eq? behaves like is in Python.

• equal? compares pairs by determining if their cars are equal? and their cdrs

are equal?(that is, they have the same contents). Otherwise, equal? behaves

like eq?.

scm> (define a '(1 2 3))

a

scm> (= a a)

Error

scm> (equal? a '(1 2 3))

#t

scm> (eq? a '(1 2 3))

#f

scm> (define b a)

b

scm> (eq? a b)

#t

8 Scheme

Questions
5.1 Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a deep

list.

(define (concat a b)

scm> (concat '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

5.2 Write a function that takes an element x and a non-negative integer n, and returns

a list with x repeated n times.

(define (replicate x n)

scm> (replicate 5 3)

(5 5 5)

Scheme 9

5.3 A run-length encoding is a method of compressing a sequence of letters. The

list (a a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where

the compressed version of the sequence keeps track of how many letters appear

consecutively.

Write a function that takes a compressed sequence and expands it into the original

sequence. Hint: You may want to use concat and replicate.

(define (uncompress s)

scm> (uncompress '((a 1) (b 2) (c 3)))

(a b b c c c)

5.4 Write a function that takes a procedure and applies it to every element in a given

list.

(define (map fn lst)

scm> (map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

5.5 Write a function that takes a procedure and applies to every element in a given

nested list.

The result should be a nested list with the same structure as the input list, but

with each element replaced by the result of applying the procedure to that element.

Use the built-in list? procedure to detect whether a value is a list.

(define (deep-map fn lst)

scm> (deep-map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

scm> (deep-map (lambda (x) (* x x)) '(1 ((4) 5) 9))

(1 ((16) 25) 81)

10 Scheme

6 Extra Questions
6.1 Fill in the following to complete an abstract tree data type:

(define (make-tree label branches) (cons label branches))

(define (label tree)

(define (branches tree)

6.2 Using the abstract data type above, write a function that sums up the entries of a

tree, assuming that the entries are all numbers.

Hint: you may want to use the map function you defined above, and also write a

helper function for summing up the entries of a list.

(define (tree-sum tree)

6.3 Using the abstract data type above, write a function that creates a new tree where

the entries are the product of the entries along the path to the root in the original

tree.

Hint: you may want to write a helper function that keeps track of the current

product.

3

0

10 2

8 −2

−3

3

0

0 0

24 −6

18

(define (path-product-tree t)

