
CS 61A Interpreters & Tail Calls
Spring 2018 Discussion 8: April 4, 2018

1 Calculator
calc> (+ 2 2)

4

calc> (- 5)

-5

calc> (* (+ 1 2) (+ 2 3))

15

We are beginning to dive into the realm of interpreting computer programs – that

is, writing programs that understand other programs. In order to do so, we’ll have

to examine programming languages in-depth. The Calculator language, a subset of

Scheme, was the first of these examples.

The Calculator language is a Scheme-syntax language that currently includes only

the four basic arithmetic operations: +, −, ∗, and /. These operations can be

nested and can take varying numbers of arguments. A few examples of calculator

in action are given on the right. A Calculator expression is just like a Scheme list.

To represent Scheme lists in Python, we use Pair objects.

For example, the list (+ 1 2) is represented as Pair(’+’, Pair(1, Pair(2, nil))).

The Pair class is the same as the Scheme procedure cons, which would represent

the same list as (cons ’+ (cons 1 (cons 2 nil))).

Pair is very similar to Link, the class we developed for representing linked lists,

except that the second attribute doesn’t have to be a linked list. In addition to

Pair objects, we include a nil object to represent the empty list. Pair instances

have methods:

1. __len__, which returns the length of the list.

2. __getitem__, which allows indexing into the pair.

3. map, which applies a function, fn, to all of the elements in the list.

nil has the methods __len__, __getitem__, and map.

Here’s an implementation of what we described:

class nil:

"""Represents the special empty pair nil in Scheme."""

def __repr__(self):

return 'nil'

def __len__(self):

return 0

def __getitem__(self, i):

raise IndexError('Index out of range')

def map(self, fn):

return nil

nil = nil() # this hides the nil class *forever*



2 Interpreters & Tail Calls

class Pair:

"""Represents the built-in pair data structure in Scheme."""

def __init__(self, first, second):

self.first = first

self.second = second

def __repr__(self):

return 'Pair({}, {})'.format(self.first, self.second)

def __len__(self):

return 1 + len(self.second)

def __getitem__(self, i):

if i == 0:

return self.first

return self.second[i-1]

def map(self, fn):

return Pair(fn(self.first), self.second.map(fn))

Questions
1.1 Translate the following Calculator expressions into calls to the Pair constructor.

Hint: in the example from earlier, the list (+ 1 2) is represented as Pair(’+’,

Pair(1, Pair(2, nil))).

> (+ 1 2 (- 3 4))

> (+ 1 (* 2 3) 4)

1.2 Translate the following Python representations of Calculator expressions into the

proper Scheme syntax:

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))



Interpreters & Tail Calls 3

2 Evaluation
Evaluation discovers the form of an expression and executes a corresponding eval-

uation rule.

We’ll go over two such expressions now:

1. Primitive expressions are evaluated directly. For example, the numbers 3.14

and 165 just evaluate to themselves, and the string “+” evaluates to the calc add

function.

2. Call expressions are evaluated in the same way you’ve been doing them all

semester:

(1) Evaluate the operator.

(2) Evaluate the operands from left to right.

(3) Apply the operator to the operands.

Here’s calc_eval:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""

if isinstance(exp, Pair):

return calc_apply(calc_eval(exp.first),

list(exp.second.map(calc_eval)))

elif exp in OPERATORS:

return OPERATORS[exp]

else: # Atomic expressions

return exp

And here’s calc_apply:

def calc_apply(op, args):

"""Applies an operator to a Pair of arguments."""

return op(*args)

The *args syntax expands a list of arguments. For example:

>>> calc_apply(print, [1, 2, 3]) # Becomes print(1, 2, 3), not print([1, 2, 3])

1 2 3

Questions
2.1 Suppose we typed each of the following expressions into the Calculator interpreter.

How many calls to calc_eval would they each generate? How many calls to

calc_apply?

> (+ 2 4 6 8)

> (+ 2 (* 4 (- 6 8)))



4 Interpreters & Tail Calls

2.2 Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and

operator, as in (and (= 1 2) (< 3 4)). Ben says this is easy: they just have to

follow the same process as in implementing * and /. Alyssa is not so sure. Who’s

right?

2.3 Now that you’ve had a chance to think about it, you decide to try implementing

and yourself. You may assume the conditional operators (e.g. <, >, =, etc) have

already been implemented for you.

def calc_eval(exp):

if isinstance(exp, Pair):

elif exp in OPERATORS:

return OPERATORS[exp]

else: # Atomic expression

return exp

def eval_and(operands):



Interpreters & Tail Calls 5

3 Tail-Call Optimization
Scheme implements tail-call optimization, which allows programmers to write re-

cursive functions that use a constant amount of space. A tail call occurs when a

function calls another function as its last action of the current frame. In this

case, the frame is no longer needed, and we can remove it from memory. In other

words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.

Consider this version of factorial that does not use tail calls:

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.

After calling (fact (- n 1)), the function still needs to multiply that result with

n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)

(define (fact-tail n result)

(if (= n 0)

result

(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail that is the last expression to be

evaluated, so it is a tail call. Therefore, fact-tail is a tail recursive process. Tail

recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open

because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remem-

ber the values for n or result in each frame. Instead, we can just update the value

of n and result of the current frame! Therefore, we can keep reusing a single frame

to complete this calculation.



6 Interpreters & Tail Calls

3.1 Identifying tail calls
A function call is a tail call if it is in a tail context. However, it might not be a

recursive tail call, as we saw earlier in fact which did multiplication instead. Tail

context simply means the expression is the last to be evaluated in that form.

For example, we consider the following to be tail contexts:

• the last sub-expression in a lambda’s body

• the second or third sub-expression in an if form

• any of the non-predicate sub-expressions in a cond form

• the last sub-expression in an and or an or form

• the last sub-expression in a begin’s body

These make sense intuitively; for if, consider that the last expression to be evaluated

in an if form is not the condition, but rather either the second or third sub-

expressions which are evaluated depending on if the condition is True or False. You

should be able to provide a similar reasoning for the other tail contexts listed above.

Before we jump into questions, a quick tip for defining tail recursive functions is

to use helper functions. A helper function should have all the arguments from the

parent function, plus additional arguments like total or counter or result.



Interpreters & Tail Calls 7

Questions
3.1 For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-a x)

(if (= x 0)

0

(+ x (question-a (- x 1)))))

(define (question-b x y)

(if (= x 0)

y

(question-b (- x 1) (+ y x))))

(define (question-c x y)

(if (> x y)

(question-c (- y 1) x)

(question-c (+ x 10) y)))

(define (question-d n)

(if (question-d n)

(question-d (- n 1))

(question-d (+ n 10))))

3.2 Write a tail recursive function that returns the nth fibonacci number. We define

fib(0) = 0 and fib(1) = 1.

(define (fib n)

(define (fib-sofar ____________________________________________)

(if _________________________________________________________

_________________________________________________________

(fib-sofar ______________________________________________)

(fib-sofar ____________________________________________________))



8 Interpreters & Tail Calls

3.3 Write a tail recursive function that takes in a Scheme list and returns the numerical

sum of all values in the list. You can assume that the list is well-formed and contains

only numbers (no nested lists).

(define (sum lst)

3.4 Write a tail recursive function that takes in a number and a sorted list. The function

returns a sorted copy with the number inserted in the correct position.

(a) Begin by writing a tail recursive function that reverses a list.

(define (reverse lst)

(define (reverse-sofar lst lst-sofar)

(if (null? lst) ______________________________________________________________________

____________________________________________________________________________________))

________________________________________________________________________________________)

(b) Next, write a tail recursive function that concatenates two lists together. You

may use reverse.

(define (append a b)

(define (rev-append-tail a b)

(if (null? a) ________________________________________________________________________

____________________________________________________________________________________))

________________________________________________________________________________________)

(c) Finally, implement insert. You may use reverse and append.

(define (insert n lst)

(define (rev-insert lst rev-lst)

(cond ((null? lst) ___________________________________________________________________)

((> (car lst) n) _______________________________________________________________)

(else __________________________________________________________________________)))

________________________________________________________________________________________)


