
CS 61A Macros & Streams
Spring 2018 Discussion 9: April 11, 2018

1 Macros
So far, we’ve mostly explored similarities between the Python and Scheme lan-

guages. For example, the Scheme list data structure is a close analogue to the

Python linked list. As another example, we saw how tail-call optimization allows

us to write recursive Scheme functions that use a constant amount of space. This

makes it feasible to translate iterative code from Python.

On the other hand, macros are a Scheme feature that don’t have a apparent Python

equivalent. Like functions, macros are a useful tool for simplifying code via abstrac-

tion. But while functions typically operate on values like numbers and lists, macros

have the option of transforming unevaluated code, leading to a whole new world of

possibilities!

scm> (print 1)

1

scm> (print 'hello)

hello

scm> (print '(yes this is dog))

(yes this is dog)

As a reminder, most Scheme functions do not have side effects. One exception to

this is print. Just like in Python, print doesn’t return anything! With that in

mind, let’s consider an example where we want to repeat a piece of code twice.

(print 'woof)

A first attempt at this might be:

scm> (define (twice f) (begin f f))

twice

scm> (twice (print 'woof))

woof

Remember that print doesn’t return anything! So we would only see the first call

to print in this case. The problem here is clear: we need to prevent the expression

we want to double from evaluating, and then somehow call it twice.

As an example of this, imagine if the problem were less constrained and we could

surround our original expression in a define expression. In that case, we could use

higher order functions to get what we want:

scm> (define (speak) (print 'woof))

speak

scm> (define (twice f) (begin (f) (f)))

twice

scm> (twice speak)

woof

woof

But if the expression is given to us directly, there’s no way to “undo” the execution

and delay it for later!



2 Macros & Streams

scm> (define (twice result)

(begin

(define (f) result) % This won't work!

(f)(f)))

twice

scm> (twice (print 'woof))

woof

Clearly, we need a special form, since we cannot evaluate our operand immediately.

This is where we apply the define-macro special form.

scm> (define-macro (twice f) (list 'begin f f))

twice

This looks a bit like a function definition. twice is the name of the macro, and

everything that follows in the same list is a required parameter. When we evaluate

the macro form, we won’t evaluate any parameters immediately. Instead, the body

of the macro describes the final expression we want to evaluate, with the unevaluated

parameters put in place! Recall that we want a final expression that looks like:

(begin

(print 'woof)

(print 'woof))

Now, let f be the snippet of print code from earlier (not the result of evaluation,

which is simply nothing) The expression:

(list 'begin f f)

Creates our desired expression, and then finally evaluates it. Note that if we used:

'(begin f f)

This wouldn’t work, since f would stay as f and wouldn’t be replaced with our

print expression. However, this seems easier to do than calling list a bunch of

times. Is there a way to get the best of both worlds?

1.1 Quasiquoting
scm> (define a 1)

a

scm> '(cons a nil)

(cons a nil)

scm> `(cons a nil)

(cons a nil)

Recall that the quote special form prevents the Scheme interpreter from executing

a following expression. You may have used it in the past to create lists without

needing to call functions such as cons and list. However, you cannot create any

lists that depend on the results of function evaluation due to the fact that quoting

will surpress all evaluation. This is not the case with quasiquoting.

At first glance, the quasiquote (which can be invoked with the backtick ` or the

quasiquote special form) behaves exactly the same.

scm> `(cons ,a nil)

(cons 1 nil)
However, using quasiquotes gives you the ability to unquote (which can be invoked

with the the comma , or the unquote special form). This removes an expression

from the quoted context, evaluates it, and places it back in.



Macros & Streams 3

By combining quasiquotes and unquoting, we can often save ourselves a lot of trouble

when building macro expressions.

As one last example, we can create a quasiquoted version of our macro from earlier:

(define-macro (twice f)

`(begin ,f ,f))

Questions
1.1 Write a macro that takes an expression and a number n and repeats the expression

n times. For example, (repeat-n expr 2) should behave the same as (twice expr).

Complete the implementation below, making use of the replicate function.

(define (replicate x n)

(if (= n 0) nil

(cons x (replicate x (- n 1)))))

(define-macro (repeat-n expr n)

scm> (repeat-n (print '(resistance is futile)) 4)

(resistance is futile)

(resistance is futile)

(resistance is futile)

(resistance is futile)

1.2 Write a macro that takes in two expressions and or’s them together (applying short-

circuiting rules). However, do this without using the or special form. You may also

assume the name v1 doesn’t appear anywhere outside of our macro. Fill in the

implementation below.

(define-macro (or-macro expr1 expr2)

`(let ((v1 _____________________________________________________________________________))

(if ________________________________________________________________________________

___________________________________________________________________________________)))

scm> (or-macro (print 'bork) (/ 1 0))

bork

scm> (or-macro (= 1 0) (+ 1 2))

3



4 Macros & Streams

1.3 Write a macro that takes in a call expression and strips out every other argument.

The first argument is kept, the second is removed, and so on. You may find it

helpful to write a helper function.

(define-macro (prune-expr expr)

scm> (prune-expr (+ 10))

10

scm> (prune-expr (+ 10 100))

10

scm> (prune-expr (+ 10 100 1000))

1010

scm> (prune-expr (prune-expr (+ 10 100) 'garbage))

10



Macros & Streams 5

2 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because the second argument to cons is always evaluated, we cannot create an

infinite sequence of integers using a Scheme list.

Instead, our Scheme interpreter supports streams, which are lazy Scheme lists. The

first element is represented explicitly, but the rest of the stream’s elements are

computed only when needed. Computing a value only when it’s needed is also

known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2

We use the special form cons-stream to create a stream. Note that cons-stream is

a special form, because the second operand (naturals (+ n 1))) is not evaluated

when cons-stream is called. It’s only evaluated when cdr-stream is used to inspect

the rest of the stream.

• nil is the empty stream

• cons-stream creates a non-empty stream from an initial element and an ex-

pression to compute the rest of the stream

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream

Streams are very similar to Scheme lists. The cdr of a Scheme list is either another

Scheme list or nil; likewise, the cdr-stream of a stream is either a stream or nil.

The difference is that the expression for the rest of the stream is computed the first

time that cdr-stream is called, instead of when cons-stream is used. Subsequent

calls to cdr-stream return this value without recomputing it. This allows us to



6 Macros & Streams

efficiently work with infinite streams like the naturals example above. We can see

this in action by using a non-pure function to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Note that the symbol evaluating! is only printed the first time cdr-stream is

called.

Questions
2.1 What would Scheme display?

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums

scm> nums

scm> (cdr nums)

scm> (cdr-stream nums)

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (has-even? nums)



Macros & Streams 7

2.2 Write a function range-stream which takes a start and end, and returns a stream

that represents the integers between start and end - 1 (inclusive).

(define (range-stream start end)

(if (___________________________________________________________________________________)

nil

(cons-stream _________________________________________________________________________)))

scm> (define s (range-stream 1 5))

s

scm> (car (cdr-stream s))

2

2.3 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)

2.4 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

(Continued on the next page)



8 Macros & Streams

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. Write exp, which returns a stream where the nth term represents the degree-n

polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333 7 7.266666667)


