
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Fall 2015

The GJDB Debugger

A debugger is a program that runs other programs, allowing its user to exercise some degree of
control over these programs, and to examine them when things go amiss. Sun Microsystems, Inc.
distributes a text-based debugger, called JDB, with its Java Developer’s Kit (JDK). I have modified
JDB to make its commands look pretty much like GDB, the GNU Debugger1, which handles C,
C++, Pascal, Ada, and a number of other languages. The result is called GJDB (g’jay dee bee).
Perhaps the most convenient way to use it is through the interface supplied with Emacs.

GJDB is dauntingly chock-full of useful stuff, but for our purposes, a small set of its features will
suffice. This document describes them.

1 Basic functions of a debugger

When you are executing a program containing errors that manifest themselves during execution,
there are several things you might want to do or know.

• What statement or expression was the program executing at the time of a fatal error?

• If a fatal error occurs while executing a function, what line of the program contains the call to
that function?

• What are the values of program variables (including parameters) at a particular point during
execution of the program?

• What is the result of evaluating a particular expression at some point in the program?

• What is the sequence of statements actually executed in a program?

• When does the value of a particular variable change?

These functions require that the user of a debugger be able to examine program data, to obtain a
traceback (a list of function calls that are currently executing sorted by who called whom), to set
breakpoints where execution of the program is suspended to allow its data to be examined, and to
step through the statements of a program to see what actually happens. GJDB provides all these
functions. It is a symbolic or source-level debugger, creating the fiction that you are executing
the Java statements in your source program rather than the machine code they have actually been
translated into.

1The recursive acronym GNU means “GNU’s Not Unix” and refers to a larger project to provide free software tools.

1

2 P. N. Hilfinger

2 Preparation

In this course, we use a system that compiles (translates) Java programs into executable files con-
taining bytecode, a sort of machine language for an idealized virtual machine that is considerably
easier to execute than the original source text. This translation process generally loses information
about the original Java statements that were translated. A single Java statement usually translates
to several machine statements, and most local variable names are simply eliminated. Information
about actual variable names and about the original Java statements in your source program is unnec-
essary for simply executing your program. Therefore, for a source-level debugger to work properly,
the compiler must retain some of this superfluous information (superfluous, that is, for execution).

To indicate to our compiler (javac) that you intend to debug your program, and therefore need
this extra information, add the -g switch during both compilation. For example, if you are compiling
an application whose main class is called Main, you might compile with

javac -g Main.java

This sample command sequence produces a class file Main.class containing the translation of
the class Main, and possibly some other class files.

3 Starting GJDB

To run this under control of gjdb, you can type

gjdb Main

in a shell. You will be rewarded with the initial command prompt:

[-]

This provides an effective, but unfrilly text interface to the debugger. I don’t actually recommend
that you do this; it’s much better to use the Emacs facilities described below. However, the text
interface will do for describing the commands.

4 Threads and Frames

When GJDB starts, your program has not started; it won’t until you tell GJDB to run it (you tell
the program is not started from GJDB’s prompt, which will be [-]). After the program has started
and before it exits, GJDB will see a set of threads, each one of which is essentially a semi-independent
program. If you haven’t encountered Java threads before, the part of your program that you usually
think of as “the program” will be the main thread, appropriately named main. However, there will
also be a bunch of system threads (running various support activities), that GJDB will tell you about
if asked, but which will generally not be of interest. GJDB can examine one thread at a time; which
one being indicated by the prompt:

[-] Means there are no threads; the program has not been started.

[?] Means the program is started, but GJDB is not looking at any particular thread. You’ll often
see this if you interrupt your program.

name[n] Means that GJDB is looking at thread name, and at frame #n (see below) within that
thread.

The GJDB Debugger 3

class Example {

public static void main (String[] args) {

for (int i = 0; i < args.length; i += 1)

process (args[i]); // (A)

}

static void process (String x) {

ilog (Integer.parseInt(x), 0); // (B)

}

static void ilog (int x, int a) {

if (x <= 1)

report (a); // (C)

else

ilog (x/2, a+1); // (D)

}

static int report (int x) {

System.out.println (x); // (E)

}

}

At any given time, a particular thread is in the process of executing some statement inside a
function (method)2. To arrive inside that method, the program had to execute a method call in a
statement of some other method (or possibly the same, in the case of recursion), and so on back to
the mysterious system magic that started it all. In other words, in each thread, there is a sequence
of currently active method calls, each of which is executing a particular statement, and each of which
also has a bunch of other associated information: parameter values, local variable values and so
forth. We refer to each of these active calls as frames, or sometimes stack frames, because they come
and go in last-in-first-out order, like a stack data structure. Each has a current location, which is a
statement or piece of a statement that is currently being executed in that call (sometimes called a
program counter or, confusingly, PC). The most recent, or top frame is the one that is executing “the
next statement in the program,” while each of the other frames is executing a (so-far incomplete)
method call.

For example, consider the simple class Example on page 3. Suppose we start the program with
command-line argument 5, and are stopped at statement (E). Then (for the main thread) GJDB sees
frames #0–#5, as follows:

Frame# Method Location Variables

0. report (E) x: 2

1. ilog (C) x: 1, a: 2

2. ilog (D) x: 2, a: 1

3. ilog (D) x: 5, a: 0

4. process (B) x: "5"

5. main (A) args: { "5" }

2Even when your program is initializing a field in a record, which doesn’t look as if it’s inside a method, it is actually
executing a part of either a constructor or a special “static initializer” method (which you’ll see in certain listings under
the name <clinit>).

4 P. N. Hilfinger

5 GJDB Commands

Whenever the command prompt appears, you have available the following commands. Actually, you
can abbreviate most of them with a sufficiently long prefix. For example, p is short for print, and b

is short for break.

help command

Provide a brief description of a GJDB command or topic. Plain help lists the possible topics.

run command-line-arguments

Starts your program as if you had typed

java Main command-line-arguments

to a Unix shell. GJDB remembers the arguments you pass, and plain run thereafter will
restart your program from the top with those arguments. By default, the standard input to
your program will come from the terminal (which causes some conflict with entering debugging
commands: see below). However, you may take the standard input from an arbitrary file by
using input redirection: adding < filename to the end of the command-line-arguments uses the
contents of the named file as the standard input (as it does for the shell). Likewise, adding >

filename causes the standard output from your program to go to the named file rather than to
the terminal, and >& filename causes both the standard output and the standard error output
to go to the named file.

where

Produce a backtrace—the chain of function calls that brought the program to its current place.
The commands bt and backtrace are synonyms.

up

Move the current frame that GJDB is examining to the caller of that frame. Very often, your
program will blow up in a library function—one for which there is no source code available,
such as one of the I/O routines. You will need to do several ups to get to the last point in
your program that was actually executing. Emacs (see below) provides the shorthand C-c<

(Control-C followed by less-than), or the function key f3.

up n Perform n up commands (n a positive number).

down

Undoes the effect of one up. Emacs provides the shorthands C-c> and function key f4.

down n Perform n down commands (n a positive number).

frame n Perform ups or downss as needed to make frame #n the current frame.

thread n Make thread #n (as reported by info threads, below) the current thread that GJDB is
examining.

print E

prints the value of E in the current frame in the program, where E is a Java expression (often
just a variable). For example

main[0] print A[i]

$1 = -14

main[0] print A[i]+x

$2 = 17

The GJDB Debugger 5

This tells us that the value of A[i] in the current frame is -14 and that when this value is added
to Main.x, it gives 17. The notations ‘$n’ to the left of the equal signs are history variables.

You can reference them in subsequent print commands, and can also use ‘$’ without a number
to refer to the most recent (highest-numbered) history variable. For example:

main[0] print $ + $1

$3 = 3

Here, ‘$’ is a synonym for ‘$2’, since that was the last expression printed in our running example.

Printing a reference value is less informative:

main[0] p args

$4 = instance of java.lang.String[3] (id=172)

This tells you that args contains a pointer to a 3-element array of strings, but not what these
strings are.

print/n E also prints the value of expression E in the current frame. If E is a reference value,
however, it also prints the subcomponents (fields or array elements) of the referenced object to
n levels. Plain print without this specification is equivalent to print/0, and does not print
subcomponents. Printing subcomponents to one level means printing each subcomponent of
E’s value as if by print/0. Printing to two levels prints means printing each subcomponent as
if by print/1, and so forth recursively. For example,

main[0] print/1 args

$5 = instance of java.lang.String[3] (id=172) {

"A", "B", "C"

}

main[0] p T

$6 = instance of Tree(id=176)

main[0] p/1 T

$7 = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178)

}

main[0] p/2 T

$8 = instance of Tree(id=176) {

label: "A"

left: null

right: instance of Tree(id=178) {

label: "B"

left: null

right: instance of Tree(id=180)

}

}

dump E

Equivalent to print/1 E.

dump/n E

Equivalent to print/n E.

6 P. N. Hilfinger

info locals Print the values of all parameters and local variables in the current frame.

info threads List all current threads.

quit
Leave GJDB.

The commands to this point give you enough to pinpoint where your program blows up, and usually
to find the offending bad pointer or array index that is the immediate cause of the problem (of
course, the actual error probably occurred much earlier in the program; that’s why debugging is
not completely automatic.) Personally, I usually don’t need more than this; once I know where my
program goes wrong, I often have enough clues to narrow down my search for the error. You should
at least establish the place of a catastrophic error before seeking someone else’s assistance.

The next bunch of commands allow you to actively stop a program during normal operation.

suspend and C-f

When a program is run from a Unix shell, C-c will terminate its execution (usually). At the
moment, unfortunately, it will also do this to GJDB itself. When debugging, you usually want
instead to simply stop the debugged program temporarily in order to examine it. When the
standard input is redirected from a file (using ‘<’; see the run command), you can simply
use suspend to stop the program (and then use continue or resume to restart). When the
program is running and standard input comes from the terminal, things get complicated: how
does GJDB know a command from program input. If you are using GJDB mode (see §7), then
C-c C-c will do the trick in this case. Otherwise, if you are running in an ordinary shell, use
C-f following by return. And finally, if you are running in a shell under Emacs, use C-qC-f

followed by return.

break place

Establishes a breakpoint; the program will halt when it gets there. The easiest breakpoints to
set are at the beginnings of functions, as in

[-] break Example.process

Set breakpoint request Example:8

(using the class Example from §4). Use the full method name (complete with class and package
qualification), as shown. You will either get a confirming message as above (saying that the
system set a breakpoint at line 8 of the file containing class Example), or something like

Deferring BP RatioCalc.main [unresolved].

It will be set after the class is loaded.

when you set a breakpoint before the class in question has been loaded. Breakpoints in anony-
mous classes are a bit tricky; their names generally have the form “C$n” where C is the name
of the outermost class enclosing them, and n is some integer. The problem is that you don’t
generally know the value of n. GJDB therefore allows “C.0” as a class name, meaning “any
anonymous class inside C.”

When you run your program and it hits a breakpoint, you’ll get a message and prompt like
this.

Breakpoint hit: thread="main", Example.main(), line=4, bci=22

main[0]

The GJDB Debugger 7

(Here, “bci” indicates a position within the bytecode translation of the method; it is not
generally very useful). Emacs allows you to set breakpoints with the mouse (see §7).

condition N cond Make breakpoint number N conditional, so that the program only stops if cond,

which must be a boolean expression, evaluates to true.

condition N Make breakpoint number N unconditional.

delete

Removes breakpoints. This form of the command gives you a choice of breakpoints to delete,
and is generally most convenient.

cont or continue
Continues regular execution of the program from a breakpoint or other stop.

step

Executes the current line of the program and stops on the next statement to be executed.

next

Like step, however if the current line of the program contains a function call (so that step

would stop at the beginning of that function), does not stop in that function.

finish

Does nexts, without stopping, until the current method (frame) exits.

6 Common Problems

Name unknown. When you see responses like this:

main[0] print x

Name unknown: x

main[0] print f(3)

Name unknown: f

check to see if the variable or method in question is static. A current limitation of the debugger is
that you must fully qualify such names with the class that defines them, as in

main[0] print Example.f(3)

Make sure that fully qualified names include the package name.

Ignoring breakpoints. For a variety of reasons, it is possible for a program to miss a breakpoint
that you thought you had set. Unfortunately, GJDB is not terribly good at the moment at catching
certain errors. In particular, it will tell you that a breakpoint has been deferred, when in fact it will
never be hit due to a class name being misspelled.

7 GJDB use in Emacs

While one can use gjdb from a shell, nobody in his right mind would want to do so. Emacs provides a
much better interface that saves an enormous amount of typing, mouse-moving, and general confusion.
Executing the Emacs command M-x gjdb starts up a new window running gjdb, and enables a
number of Emacs shortcuts, as well as providing a Debug menu for issuing many GJDB commands.

8 P. N. Hilfinger

This command prompts for a command string (typically gjdb classname) and (for certain historical
reasons) creates a buffer named *gud-classname*. Emacs intercepts output from gjdb and interprets
it for you. When you stop at a breakpoint, Emacs will take the file and line number reported by
gjdb, and display the file contents, with the point of the breakpoint (or error) marked. As you step
through a program, likewise, Emacs will follow your progress in the source file. Other commands
allow you to set or delete breakpoints at positions indicated by the mouse.

The following table describes the available commands. On the left, you’ll find the text command
line, as described in §5. Next comes the Debug menu button (if any) that invokes the command.
This menu applies both to the GJDB buffer and to buffers containing .java files. Next come the
Emacs shortcuts: sequences of keys that run the commands. The shortcuts are slightly different in
the GJDB buffer as opposed to buffers containing source (.java) files, so there are two columns of
shortcuts. The last column contains further description. Finally, here are a few reminders about
Emacs terminology:

1. In shortcuts, C-x means “control-x,” S-x means “shift-x,” fn refers to one of the function keys
(typically above the keyboard), and SPC is the space character.

2. The point, in Emacs, refers to the location of the cursor; there is one for each buffer. You can
set the point using the usual motion commands when in the buffer, or by simply clicking the
mouse at the desired spot.

3. The region in any given buffer is a section of text (usually shadowed or highlighted so that you
can tell where it is). One convenient way to set it is by dragging the mouse over the text you
want included while holding down the left mouse button.

The GJDB Debugger 9

Table 1: Summary of Commands for Program Control

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

next Step Over f6 or
C-c

C-n

f6 Execute to the next statement of the
program; if this statement contains
function calls, execute them com-
pletely before stopping. [See Note 3,
below]

step Step Into f5, or
C-c C-s

f5 Execute to the next statement of the
program; if this statement calls a
function, stop at its first line. [See
Note 3, below]

finish Finish Function f7 or
C-c C-f

f7 Execute until the current function call
returns.

continue Continue f8 or
C-c C-r

f8 Continue execution of stopped pro-
gram.

suspend Interrupt C-c C-c Interrupt execution of program and
suspend its threads.

C-f Interrupt C-c C-c Same as suspend, but works in cases
where the debugged program is run-
ning and GJDB is passing input to it
from the terminal.

break file:line# Set Breakpoint C-x SPC Set a breakpoint at the point (applies
only to the source buffer).

delete file:line# Clear Breakpoint Remove a breakpoint at the point
(applies only to the source buffer).

run Run (Re)start the program, using the last
set of command-line arguments. Only
available in the GJDB buffer.

quit Quit Leave GJDB. Only available in the
GJDB buffer.

- Refresh Re-arrange Emacs’ windows as
needed to display the current source
line that GJDB is looking at.

- Start Debugger Run gjdb on the class in this (source)
buffer.

10 P. N. Hilfinger

Table 2: Summary of Commands for Examining a Program

Emacs

Command Line Menu
GJDB
buffer

.java

buffer Description

print expr Print f9 f9 Evaluate expr and print, without
showing any subcomponents of the
value. Emacs commands apply either
to the contents of the region, or if it
is inactive, to the variable, field selec-
tion, or function call at or after the
point.

dump expr Print Details S-f9 S-f9 Evaluate expr and print, also print-
ing any components (array elements
or fields). With Emacs, gets the ex-
pression to print as for print.

info locals Print (as for the print command) the
values of all local variables in the cur-
rent frame.

up View Caller f3 or
C-c <

f3 Move the debugger’s current focus of
attention up one frame; if looking at
frame n at the moment, we switch to
frame n − 1.

down View Callee f4 or
C-c >

f4 Move the debugger’s current focus
of attention down one frame (from
frame n to frame n + 1). Opposite
of up.

where Print a backtrace, showing all active
subprogram calls.

info threads List all threads in the program.
thread N Make thread #N be the one that

GJDB is currently examining.

	Basic functions of a debugger
	Preparation
	Starting GJDB
	Threads and Frames
	GJDB Commands
	Common Problems
	GJDB use in Emacs

