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Chapter 1

Java Overview

Different people have different ways of learning programming languages. Your au-
thor likes to read reference manuals (believe it or not)—at least if they are rea-
sonably complete—on the grounds that this is the most efficient way to absorb a
language quickly. Unfortunately, it is an approach that only works when one knows
what to expect from a programming language, and has the necessary mental cub-
byholes already constructed and ready for filing away specific details. Less grizzled
programmers usually benefit from some kind of tutorial introduction, in which we
look at examples of programs and program fragments. That’s the purpose of this
chapter. After reading it, the succeeding chapters of this book ought to be somewhat
more digestible.

1.1 Basic Program Structure

Let’s start with the traditional simplest program:

/* Sample Program #1 */

public class Hello {

public static void main (String[] arguments) {

System.out.println ("Hello, world!"); // Message + newline

}

}

This example illustrates a number of things about Java:

Java programs are collections of definitions. In this case, we have definitions
of a class named Hello, and a function (or method) named main.

Definitions are grouped into classes. Java programs may contain definitions of
functions, variables, and a few other things. Every such definition is contained
in (is a member of ) some class.

Dots indicate some kind of containment. In the example above, System is a
class and out is a variable defined in that class. We can think of that variable,

9



10 CHAPTER 1. JAVA OVERVIEW

in turn, as referring to an object that has parts (members), one of which is the
println method. So in general, you can read X.Y as “the Y that is (or whose
definition is) contained in X.” We sometimes call ‘.’ the selection operator.

The syntax “method-name(expressions)” denotes a function call. (Also called
method call or method (or function) invocation.) The program first evaluates
the expressions, which are called actual parameters. In our example, there
is only one (more would be separated by commas), and its value is a string
of characters. Next, the value(s) of any actual parameters are handed off to
(passed) to the indicated method, which then does whatever it does (unsur-
prisingly, System.out.println prints the string that you pass it, followed by
an end-of-line.)

Executing a complete program means calling a method named main. (Not
just any method called main, but we’ll get to that detail later). Appropriately
enough, the method called is often referred to as the main program. You won’t
always have to write a main method:

• Sometimes, your task is to write a component or a package of components
for use in one or more other programs. These will consist of a set of
classes, not necessarily containing a main method.

• Sometimes, you are writing something that is intended to be dropped into
an existing framework of supporting components. For example, when you
write a Java applet (a program intended to be run by a Web browser when
one clicks on the appropriate thing) the browser will supply a standard
main, and your applet provides one of the methods it calls.

But for standalone programs (also called application programs), main is where
things start.

Comments are surrounded by /* */ or by // and the end of the line. Only
humans read comments; they have no effect on the program.

A note on printing. It isn’t theoretically central to the topic of programming,
but the printing or other display of results is obviously rather important. Many in-
troductory Java texts get rather hung up on the use of various GUI (Graphical User
Interface) tools for displaying and inputting text, commands, or other communica-
tions. I’d rather keep it simple, so we’ll start with straightforward interaction with
a textual display and keyboard. For output purposes, we use System.out.println
as you’ve seen, which comes with a couple of useful variants. Here is an equivalent
to the main method above:

public static void main (String[] args) {

System.out.print ("Hello,");

System.out.print (" world!");

System.out.println ();

}
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Hello.java
javac

(compiler)
Hello.class

java

(interpreter)
Hello world!

standard
class
library

Figure 1.1: From program to execution. We first process our sample program
with the javac compiler to create a class file, which we can then execute with an
interpreter (java) to finally print a message. In this tiny program, pre-supplied
programs from the standard class library actually do most of the work.

By comparing the two versions, you can probably deduce that the difference be-
tween print and println is that println ends the line immediately after printing,
whereas print does not. You’ll use print to break the printing of a complex line
of output into pieces.

1.2 Compilation and Execution

Precise details on how to prepare and run this program differ from one implemen-
tation of Java to another. Here is a typical sequence.

• Put the program in one or more files. It generally makes things easier for
the Java system if you put each class in a file named after the class—for our
example, Hello.java. One can put several classes into a file or name the file
arbitrarily, but the Java system will then sometimes be unable to find what
it needs.

• Compile the file with a Java compiler. A compiler is a translation program
that converts a source program (our little sample program is a source program)
into some form that is more easily executed. Java compilers typically translate
each class into a class file. For example, if we use Sun Microsystems’s software,
the command line

javac Hello.java

will translate class Hello into the file Hello.class.

• Execute the program by invoking a Java interpreter. An interpreter is a
program that executes programs. In the case of Sun’s software, the command

java Hello

runs our program, producing the output line

Hello, world!
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The argument to the java program is the name of the class containing the
desired main method. The interpreter finds out what it is supposed to do
by reading the file Hello.class, together with a library of other class files
that implement standard, pre-defined parts of Java (like the System class
mentioned above).

There are numerous variations on this process. There are systems in which the
compiler, rather than producing a .class file for input to an interpreter, produce a
machine-language or executable file that the hardware of your machine can execute
directly. This arrangement is typical for languages such as C and C++.

As another variation, the interpreter in many Java implementations produces
machine code from .class files “just in time” for it to be executed when needed—
hence the common term JIT compiler.

Typical interactive development environments (IDEs), such as Eclipse, tend to
hide what’s really happening from you. You just write your program and push some
button labeled “Run”, and the IDE compiles whatever is needed and executes it.

1.3 Simple Values and Expressions

You can think of a program as a set of instructions for creating values and moving
them around, eventually sending them to something that does something visible
with them, like displaying them, or moving some physical control. Values may either
be primitive—in Java, these are various kinds of numbers, characters (as from an
alphabet), and booleans (true/false)—or they may structured into compound values.
A programming language construct that produces a value is called an expression.

1.3.1 Writing Numbers

Something that denotes a number is known as a numeral, or, especially in pro-
gramming languages, as a numeric literal. Java has both integral and floating-point
literals (the difference being that the latter can have fractional parts). Here are
some examples, which are mostly self-explanatory:

class Numerals {

public static void main (String[] args) {

// A. All print 42

System.out.println (42); // Base 10

System.out.println (052); // Base 8 (starts with 0)

System.out.println (0x2a); // Base 16 (a=10, b=11, ..., f=15)

// B. All print 31.45

System.out.println (31.45);

System.out.println (3.145e1); // en or En means ×10n

System.out.println (3145e-2);

// C. Prints 12345678901

System.out.println (12345678901L);

}
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}

Technically, what we think of as negative numbers, such as -3, are actually positive
literals operated on by the negation operator (-).

Example C indirectly illustrates a common feature of “production” programming
languages such as C, C++, Java, Fortran, Pascal, Basic, and so on. For reasons
having to do with fast and efficient execution, the “integers” in these programming
languages comprise a tiny, finite portion of the mathematical integers. Ordinary
integers in Java, for example, are all in the range −231 to 231−1, or about ±2 billion.
To get somewhat larger integers, you must use a distinct type of value, known as a
long, whose literals have a trailing ‘L’ on them. These give you a range of −263 to
263−1. To go even further requires one of the built-in library classes (appropriately
called java.math.BigInteger), for which there aren’t any built-in literals.

1.3.2 Arithmetic

Java expressions include the familiar algebraic notation, which you can play with
easily enough by putting examples into a main function:

class Arith {

public static void main (String[] args) {

// A. Prints 3

System.out.println ((3 + 7 + 10) * (1000 - 8)

/ 992 - 17);

// B. Prints 2.7166666666666663

System.out.println (2.0 + 1.0/2 + 1.0/6 + 1.0/24 + 1.0/120);

// C. Prints 2

System.out.println (2 + 1/2 + 1/6 + 1/24 + 1/120);

// D. Prints -3

System.out.println (1 - 2 - 2);

// E. Prints 17

System.out.println (117 % 20);

// F. Prints Infinity

System.out.println (1.0 / 0.0);

// G. Prints -2147483648

System.out.println (2147483647 + 1);

// H. Prints NaN

System.out.println (0.0 / 0.0);

// I. Halts the program with an exception

System.out.println (1/0);

}

}

As you can see, these examples look pretty much like what you might write by hand,
and illustrate a few more points:

• ‘*’ denotes multiplication and ’%’ denotes remainder.
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• Operators have precedences. Example B illustrates grouping: the subex-
pression 2.0 + 1.0/2 is interpreted as 2.0+(1.0/2), not (2.0+1.0)/2, because
the division operator groups more tightly (or has higher precedence than) the
addition operator. Example A uses parentheses to control grouping.

• Operators associate. Example D illustrates grouping when the operators
have the same precedence. It is interpreted as (1 − 2) − 2, not 1 − (2 − 2),
because subtraction (like most operators) associates left (or groups left) with
operators of the same precedence.

• Integer quantities and floating-point quantities are distinct. In math-
ematics, the quantity written ‘1’ can be interpreted as either an integer or a
real number, and the expression 1/2 always means the same as 0.5. In Java (as
in most programming languages), a number written without a decimal point
(an integral quantity) is of a different type from one written with a decimal
point (a floating-point quantity), and the rules of arithmetic differ markedly.
Division of two integers throws away the fractional part of the answer to yield
an integer, whereas division of floating-point numbers behaves more like regu-
lar mathematics. Thus 1/2 yields 0, while 1.0/2.0 yields 0.5. When the two
types are mixed, Java first converts the integer quantities to floating point.

• Floating-point arithmetic approximates real arithmetic. If you work
out the mathematical value you’d normally expect from example B, you’ll
see it differs slightly from the one printed, which appears to be off by about
3.7×10−16. Floating-point arithmetic is a compromise between computational
speed and mathematical truth. The results of each operation are computed,
correctly rounded, to a certain number of binary digits (in this case, 52).

• Arithmetic has limited range. Example G illustrates that when an integer
value becomes too large, the result “wraps around” to the smallest number.
There are special values (which print as Infinity and -Infinity to represent
numbers that are too large in floating point, which are also used when non-zero
floating-point numbers are divided by 0 (Example F).

• Arithmetic nonsense has predictable effects. Example H shows that a
floating-point operation with an undefined value (there’s no sensible definition
one can give to 0.0/0.0) yields a strange special value called NaN (for “Not A
Number”). The analogous integer operation causes an error (what Java calls
an exception), since for various reasons, there is no available integer to use as
NaN.

1.3.3 Comparisons and Logical Operations

Comparison operators and logical operators produce the two boolean values true
and false:

class Compare {

public static void main (String[] args) {
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// A. All print true

System.out.println (true);

System.out.println (3 < 4);

System.out.println (3 <= 4); System.out.println (3 <= 3);

System.out.println (4 > 3);

System.out.println (4 >= 3); System.out.println (3 >= 3);

System.out.println (4 != 3); System.out.println (3 == 3);

// B. All print false

System.out.println (false);

System.out.println (3 < 3); System.out.println (3 != 3);

// C. All print true

System.out.println (3 < 4 && 4 < 5);

System.out.println (3 > 4 || 4 < 5);

System.out.println (! (3 < 4 && 4 < 3));

// D. All print true

System.out.println (3 < 4 || 1/0 == 0);

System.out.println (! (3 > 4 && 1/0 == 0));

}

}

Again, this is all pretty easy to figure out, once you see the transliterations Java
uses for common notations:

≤ =⇒ <= ≥ =⇒ >=

= =⇒ == 6= =⇒ !=

and =⇒ && or =⇒ ||

not =⇒ !

All of the operators demonstrated have precedences below those of arithmetic
operators, with the logical operators having the lowest precedences, except that
logical not (!) has a precedence equal to that of the negation operator (-3). If
that strikes you as potentially confusing, welcome to the club. Java has a large
collection of operators at 15 different levels of precedence, which quickly become
difficult to remember. As a stylistic matter, therefore, feel free to use parentheses
even when operator-precedence rules make them redundant, if that makes your
program clearer.

Example D illustrates that && and || are “short-circuit” operators. Even though
the second operand in both these cases would cause an exception, no such thing
happens because the || only evaluates its right operand if needed. Upon evaluating
its left operand, and finding it true, it skips evaluation of the right operand, while
the && doesn’t bother to evaluate its right operand if the left evaluates to false. This
is an important property of these two operators; the first operand acts as a kind of
guard on the second. All the other arithmetic and comparison operators, as well as
method calls, always evaluate all their operands.
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1.3.4 Strings

In programming-language jargon, a string is a sequence of characters. We write
strings in double quotes, using a backslash where needed to indicate special char-
acters, including double quotes and backslashes:

System.out.println ("Simple string.");

System.out.println (""); // An empty string

System.out.println ("Say \"Hello.\""); // \" is double quote

System.out.println ("Name:\tJohn"); // \t is tab

System.out.println ("\\FOO\\BAR");

System.out.println ("One thing\nThe other thing");

These statements print (on Unix systems):

Simple string.

Say "Hello."

Name: John

\FOO\BAR

One thing

The other thing

The newline character (notated \n) denotes the end-of-line on Unix systems. This
is not, unfortunately, universal, which is why I’ve used println rather than \n to
put things on separate lines (println “does the right thing” at the end of a line for
whatever system you use).

Characters, the components of strings, have their own literals, which are enclosed
in single quotes, with the same back-slashing notation:

’A’ ’\t’ ’\’’ ’"’ ’\n’

The + operator works on strings, but in that case means “concatenate”, as in

System.out.println ("The value of" +

" 17+25 is " + (17+25) + ".");

which prints

The value of 17+25 is 42.

You might well protest at this point that (17+25) yields an integer, not a string.
This is correct; conveniently, though, the + operator is smart enough that when one
of its operands is a string, and the other isn’t, it converts the other operand to a
string. In fact, underneath the hood, the println method ultimately prints strings,
and the variations that work on other types first perform this same conversion.

There are quite a few other operations on strings, of which some of the more
important are these:



1.3. SIMPLE VALUES AND EXPRESSIONS 17

("19-character string").length () =⇒ 19 length of string
("abcd").charAt (3) =⇒ ’d’ get a character (num-

ber from 0)
("abcd").equals ("abcd") =⇒ true compare contents
("Hello, world!").substring (7, 12) =⇒ "world" substring between

start and end posi-
tions

("Hello, world!").substring (7) =⇒ "world!" substring starting at
given position

The .equals method here is interesting. You might think that == would work, but
for reasons we’ll see later, that is not a reliable way to compare strings.

1.3.5 Static Methods: Abstracting Computation

Method (function) definition is the most basic abstraction mechanism in a typical
programming language. It enables you to “define a new verb” for later use in your
program, making it unnecessary to write, remember, or even know the details of
how to perform some action.

In Java, there are static methods (also called class methods) and non-static (or
instance) methods. We’ll look at instance methods later. Static methods correspond
to plain, ordinary functions, subprograms, or procedures in other programming
languages (such as C, Pascal, Fortran, Scheme, or Basic). We’ve already seen
examples of static method definition (of the main method).

The basic syntax is relatively easy:

A static Tr N (T1 N1, T2 N2, ...) {

B
}

where

• Tr, T1, etc., denote types of values. Tr is the type of value returned (produced,
yielded) by the method, and the other Ti are the formal-parameter types, the
types of values that may be passed to the method. In Java, unlike dynamically
typed languages such as Scheme or the scripting languages Python and Perl,
one must be specific about the types of most quantities. You can indicate that
a method does stuff (printing, for example), but does not return a value, by
using the special “type” void for Tr.

• A is one of the keywords public, private, protected, or it is simply missing
(the default). It indicates the access of the method—what other parts of the
program may call it. The public modifier, as you might guess, means that the
method may be called from anywhere. The private modifier restricts access
to the same class. (See §1.14)

• N is the name by which the method is known. A method definition always
occurs inside a class definition. The full name of a static method N defined in
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a class C is C.N (dot means “that is defined in”). However, the simple name
N works within the same class.

• N1, etc., are the formal parameters. These are names by which the body of
the method (B) can refer to the values passed to it.

• { B } is the body of the method. B is a sequence of statements that perform
whatever computation the method is supposed to perform (B may be empty
if the method does nothing).

• The header of the method definition—everything except the body—defines
its signature, which consists of its name, return type, and formal-parameter
types.

So far, the only statements we’ve seen are method calls (to println). We’ll
see more later, but there’s one particularly important ones for methods that return
values: the statement

return E;

means “end this call to the method, causing it to yield the value E (an expression).”
Here are two examples:

/** The square of X. */

public static double square (double x) {

return x*x;

}

/** The distance between points (X0, Y0) and (X1, Y1). */

public static double dist (double x0, double y0, double x1, double y1) {

return Math.sqrt (square (x1 - x0) + square (y1 - y0));

// NOTE: Math.sqrt is a standard square-root function */

}

These two examples also illustrate some documentation conventions that I’ll be
using throughout. Comments beginning with ‘/**’ are, by convention, called docu-
mentation comments. They are to be used before definitions of things to describe
what those things do or are for. In the case of methods, I refer to the parameter
names by writing them in upper case (the idea being that this is a way to set them
off from the rest of the text of the comment in a way that does not depend on
fancy fonts, colors, or the like). At least one tool (called javadoc) recognizes these
comments and can process them into on-line documentation.

1.4 Conditional Execution

To do anything very interesting, programs eventually have to make decisions—to
perform different calculations depending on the data. There are several constructs
to represent this in Java. Here, we’ll consider the simplest.



1.4. CONDITIONAL EXECUTION 19

1.4.1 If statements

An if-statement has one of the forms

if (condition) then-part
// or

if (condition) then-part else else-part

(Normally, though, we lay these statements out on separate lines, as you’ll see).
The condition is a boolean expression. If it evaluates to true, the program executes
the then-part (a statement), and otherwise the else-part, which simply defaults to
the empty statement if absent.

We’ll often need to have then-part or else-part contain more than one statement.
The trick used for this purpose (and for other constructs that have a “statement”
part that needs to be several statements) is to use a kind of statement called a block.
A block consists of any number of statements (including zero) enclosed in curly
braces ({ }). Unlike other statements you’ve seen, it does not end in a semicolon.
For example:

if (3 > 4) {

System.out.println ("3 > 4.");

System.out.println ("Looks like we’re in trouble.");

} else

System.out.println ("OK");

1.4.2 Conditional Expressions

The expression C ? Et : Ef yields either the value of Et or Ef , depending on
whether C evaluates to true or false. That is, ‘?’ means roughly “then” and ‘:’
means “otherwise”, with an invisible “if” in front. This peculiar-looking ternary
operator is not commonly used in C, C++, or Java, perhaps because it, well, looks
peculiar. It is only your author’s desire for balance that prompts its inclusion here.
Here are some examples:

System.out.println (3 < 4 ? "Less" : "More"); // Prints Less

System.out.println (4 < 3 ? "Less" : "More"); // Prints More

// The next two mean the same, and print 3.1

System.out.println (1 < 0 ? 1.1 : 1 > 2 ? 2.1 : 3.1);

System.out.println (1 < 0 ? 1.1 : (1 > 2 ? 2.1 : 3.1));

The expressions after ‘?’ and ‘:’ must be the same type of thing; 3<4 ? 1 : "Hello"

is erroneous.

1.4.3 Case analysis and the Switch Statement

From time to time, you’ll find yourself in a situation where you need to break some
subproblem down into several cases. This is something to avoid if possible, but not
all problems lend themselves to simple, unconditional formulae. You can always get
by with multiple uses of the if statement, like this mathy example:
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if (x < -10.0)

y = 0.0;

else if (x < 0.0)

y = 1.0 / f(-x);

else if (x < 10.0)

y = f(x);

else

y = Double.POSITIVE_INFINITY;

This compound if statement is so common that we customarily format as you see
above, instead of indenting the entire else part of the first if, etc., like this:

// Example of how NOT to format your program

if (x < -10.0)

y = 0.0;

else

if (x < 0.0)

y = 1.0 / f(-x);

else

if (x < 10.0)

y = f(x);

else

y = Double.POSITIVE_INFINITY;

Sometimes, you’ll encounter programs where first, there are lots of cases, and
second, each test is of the form

if (E = some integral constant)

where E is the same each time. For this purpose, there is a special construct,
introduced with the keyword switch. For example, consider this fragment:

if (action == PICK_UP)

acquireObject ();

else if (action == DROP)

releaseObject ();

else if (action == ENTER || action == EXIT)

changeRooms (action);

else if (action == QUIT) {

cleanUp ();

return;

} else if (action == CLIMB)

...

else

ERROR ();

Here, action is some integral variable (this might include character constants as
well, but not strings), and the upper-case names are all defined in a class somewhere
as symbolic constants standing for integers. The old-fashioned way to do this is
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static final int // ’final’ means ’constant’

QUIT = 0,

PICK_UP = 1,

DROP = 2,

ENTER = 3,

EXIT = 4,

CLIMB = 5,

etc.

As a matter of style, whenever you represent some set of possible values with ar-
bitrary integers like this, always introduce meaningful symbols like these—avoid
sprinkling your program with “mystery constants.” Recent versions of Java, how-
ever, have introduced enumerated types for this purpose. We’ll get to them in §5.6.

An arguably clearer way to write the if statement above is with switch, as
follows:

switch (action) {

case PICK_UP:

acquireObject ();

break;

case DROP:

releaseObject ();

break;

case ENTER: case EXIT:

changeRooms (action);

break;

case QUIT:

cleanUp ();

return;

case CLIMB:

...

default:

ERROR ();

}

Here, the break statements mean “leave this switch statement.”

1.5 Arrays I: The Command Line

Before finally turning to an example, we’ll need one other little piece of syntax to
allow simple communication from the outside world to our program. I said earlier
that the main program looks like this:

public static void main (String[] args) ...

This notation means that the formal parameter, args, is an array of strings1.
For our immediate purposes, this means that it references a sequence of string

1The name args is arbitrary, and you are free to choose another.
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values, called args[0], args[1], etc., up to args[args.length - 1]. That is,
args.length is the number of strings in args. When you start your program with

java MainClassName foo bar baz

the method main is called with "foo" as args[0], "bar" as args[1], and "baz" as
args[2].

You have to be careful to remember that the arguments to main are strings.
The following main program won’t work:

class Remainder {

public static void main (String[] operands) {

System.out.println (operands[0] % operands[1]);

}

}

You might think that you could run this with

java Remainder 1003 12

and have it print 7. However, until told otherwise, the Java system will not assume
that a string is to be treated as a number just because all its characters happen to
be digits. The operation of converting a string of characters into a number requires
specific action in Java:

class Remainder {

public static void main (String[] operands) {

System.out.println (Integer.parseInt (operands[0])

% Integer.parseInt (operands[1]));

}

}

That is, the Integer.parseIntmethod converts a string of decimal digits to an in-
teger. (There’s a similar method Double.parseDouble for floating-point numbers).

1.6 Example: Finding Primes

You’ve now seen a great deal of the expression language of Java, enough in fact to
write quite elaborate programs in the functional style. Let’s start with a simple
program to find prime numbers. A prime number is an integer larger than 1 whose
only positive divisors are itself and 12. Suppose that we want a program that, when
given a number, will print all primes less than or equal to that number, perhaps in
groups of 10 like this:

You type: java primes 101

It types: 2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101

2Depending on whom you read, there can be negative primes as well, but for us, this would be
an unnecessary complication, so we stick to positive primes.
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1.6.1 Starting from the top

There are many ways to attack a simple problem like this. We may proceed top-
down, starting with a sort of overall outline or skeleton, which we subsequently fill
in, or bottom-up, building pieces we know we’ll need and assembling them into a
whole. Finally, we might use a little of both, as we’ll do here. For example, the
description above suggests the following program, with comments in place of stuff
we haven’t written yet:

class primes {

/** Print all primes up to ARGS[0] (interpreted as an

* integer), 10 to a line. */

public static void main (String[] args) {

printPrimes (Integer.parseInt (args[0]));

}

/** Print all primes up to and including LIMIT, 10 to

* a line. */

private static void printPrimes (int limit) {

// do the work

}

}

This is a simple example of the classic “put off until tomorrow,” top-down school of
programming, in which we simplify our task in stages by assuming the existence of
methods that do well-defined pieces of it (writing down their definitions, not includ-
ing their bodies, but including comments that will remind us what they’re supposed
to do). Then we handle each incomplete piece (sometimes called an obligation) by
the same process until there are no more incomplete pieces

1.6.2 Starting from the bottom

Our problem involves prime numbers, so it might well occur to you that it would
be useful to have a method that tests to see if a number is prime. Let’s proceed,
bottom-up now, to define one, hoping to tie it in later to program we’ve started
building from the top.

/** True iff X is a prime number. */

private static boolean isPrime (int x) {

return /*( X is prime )*/;

}

I’ve introduced a piece of pseudo-Java here to help in developing our program: the
notation

/*( description of a value )*/
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is intended to denote an obligation to produce some expression (as yet undeter-
mined) that yields a value fitting the given description. The description “X is prime”
is a true/false sentence, so in this example, isPrime yields true iff X is prime3:

One general technique is to work backward from possible answers to the condi-
tions under which those answers work. For example, we know immediately that a
number is not prime—that we should return false—if it is ≤ 1, so we can replace
the dummy comment as follows:

if (x <= 1)

return false;

else

return /*( True iff X is prime, given that X>1 )*/;

I’ll call this the method of guarded commands: the “guards” here are the conditions
in the if statements, and the “commands” are the statements that get executed
when a condition is true.

For larger numbers, the obvious brute-force approach is to try dividing x by all
positive numbers ≥ 2 and < x. If there are none, then x must be prime, and if any
of them divides x, then x must be composite (non-prime). Let’s put this task off
until tomorrow, giving us our finished isPrime method:

private static boolean isPrime (int x) {

if (x <= 1)

return false;

else

return ! isDivisible (x, 2);

}

/** True iff X is divisible by any positive number >=K and < X,

* given K > 1. */

private static boolean isDivisible (int x, int k) {

/*{ return true iff x is divisible by some integer j, k ≤ j <
x; }*/

}

Here, I am using another piece of pseudo-Java: the comment

/*{ description of an action }*/

is intended to denote an obligation to produce one or more statements that perform
the described action.

By the way, we saw conditional expressions in §1.4. They allow an alternative
implementation of isPrime:

private static boolean isPrime (int x) {

return (x <= 1) ? false : ! isDivisible (x, 2);

}

3The notation iff used here and elsewhere is mathematician’s shorthand for “if and only if.”
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To tackle this new obligation, we can again use guarded commands. For one
thing, we know that isDivisble should return false, according to its comment, if
k ≥ x, since in that case, there aren’t any numbers ≥ k and < x:

if (k >= x)

return false;

else

/*{ return true iff x is divisible by some integer j,
where k ≤ j < x, assuming that k<x; }*/

Now, if we assume that k < x, then (always following the documentation comment)
we know that one case where we should return true is where k divides x:

if (k >= x)

return false;

else if (x % k == 0)

return true;

else

/*{ return true iff x is divisible by some integer j, k ≤ j <
x,

assuming k<x, and x is not divisible by k; }*/

Here, I’ve used the remainder operator to test for divisibility.

Well, if k itself does not divide x, then for x to be divisible by some number ≥ k
and < x, x must be divisible by a number ≥ k + 1 and < x. How do we test for
that? By a curious coincidence, we just happen to have a method, isDivisible,
whose comment says that if given two parameters, x and k, it returns “True iff x is
divisible by any positive number ≥ k and < x, given k > 1.” So our final answer is

/** True iff X is divisible by any positive number >=K and < X,

* given K > 1. */

private static boolean isDivisible (int x, int k) {

if (k >= x)

return false;

else if (x % k == 0)

return true;

else

return isDivisible (x, k+1);

}

Now you might object that there’s something circular about this development:
to finish the definition of isDivisible, we used isDivisible. But in fact, the
reasoning used is impeccable: assuming that isDivisible does what its comment
says, the body we’ve developed can only return a correct result. The only hole
through which an error could crawl is the question of whether isDivisble ever gets
around to returning a result at all, or instead keeps calling itself, forever putting off
until tomorrow the production of a result.
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However, you can easily convince yourself there is no problem here. Each time
isDivisible gets called, it is called on a problem that is “smaller” in some sense.
Specifically, the difference x − k gets strictly smaller with each call, and (because
of the guard k >= x) must stop getting smaller once x− k ≤ 0. (Formally, we use
the term variant for a quantity like x− k, which shrinks (or grows) with every call
but cannot pass some fixed, finite limit.) We have established that isDivisible is
not circular, but is a proper recursive definition.

1.6.3 Meeting in the middle

We are left with one final obligation, the printPrimes procedure:

/** Print all primes up to and including LIMIT, 10 to a line. */

private static void printPrimes (int limit) {

/*{ do the work }*/

}

Let’s make the reasonable assumption that we’ll be printing prime numbers one at a
time by looking at each number up to the limit, and figuring out whether to print it.
What do we need to know at any given time in order to figure out what to do next?
First, clearly, we need to know how far we’ve gotten so far—what the next number
to be considered is. Second, we need to know what the limit is, so as to know when
to stop. Finally, we need to know how many primes we’ve already printed, so that
we can tell whether to start a new line. This all suggests the following refinement:

private static void printPrimes (int limit) {

printPrimes (2, limit, 0);

System.out.println ();

}

/** Print all primes from L to U, inclusive, 10 to a line, given

* that there are initially M primes printed on the current

* line. */

private static void printPrimes (int L, int U, int M) {

...

}

This illustrates a small point I hadn’t previously mentioned: it’s perfectly legal to
have several methods with the same name, as long as the number and types of the
arguments distinguish which you intend to call. We say that the name printPrimes
here is overloaded.

To implement this new method, we once again employ guarded commands. We
can easily distinguish four situations:

A. L > U , in which case there’s nothing to do;

B. L ≤ U and L is not prime, in which case we consider the next possible prime;
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C. L ≤ U and L is prime and M is less than 10, in which case we print L and go
on to the next prime); and

D. L ≤ U and L is prime and M is divisible by 10, which is like the previous
case, but first we go to the next line of output and adjust M).

A completely straightforward transliteration of all this is:

if (L > U) // (A)

;

if (L <= U && ! isPrime (L)) // (B)

printPrimes (L+1, U, M);

if (L <= U && isPrime (L) && M != 10) { // (C)

System.out.print (L + " ");

printPrimes (L+1, U, M+1);

}

if (L <= U && isPrime (L) && M == 10) { // (D)

System.out.println ();

System.out.print (L + " ");

printPrimes (L+1, U, 1);

}

Well, this is a little wordy, isn’t it? First of all, the conditions in the if statements
are mutually exclusive, so we can write this sequence more economically as:

if (L > U) // (A)

;

else if (! isPrime (L)) // (B)

printPrimes (L+1, U, M);

else if (M != 10) { // (C)

System.out.print (L + " ");

printPrimes (L+1, U, M+1);

} else { // (D)

System.out.println ();

System.out.print (L + " ");

printPrimes (L+1, U, 1);

}

Step (A) looks kind of odd. We often write things like this as

if (L > U)

return;

to make it clearer that we’re done at this point, or we can factor the condition like
this:

if (L <= U) {
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if (! isPrime (L)) // (B)

printPrimes (L+1, U, M);

else if (M != 10) { // (C)

System.out.print (L + " ");

printPrimes (L+1, U, M+1);

} else { // (D)

System.out.println ();

System.out.print (L + " ");

printPrimes (L+1, U, 1);

}

}

I use the term “factor” here in a sort of arithmetical sense. Just as we can rewrite
ab+ac+ad as a(b+ c+d), so also we can “factor out” the implicit !(L <= U) from
all the other conditions and just drop the L > U case.

Finally, recognizing the M keeps track of the number of primes already printed
on the current line and doing a little more factoring, we get this:

if (L <= U) {

if (! isPrime (L)) // (B)

printPrimes (L+1, U, M);

else {

if (M == 10) {

System.out.println ();

M = 0;

}

System.out.print (L + " ");

printPrimes (L+1, U, M+1);

}

}

1.7 Example: Pig Latin

We’d like to write a program (never mind why) that translates into “Pig Latin.”
There are numerous dialects of Pig Latin; we’ll use the simple rule that one trans-
lates into Pig Latin by moving any initial consonants to the end of the word, in
their original order, and then appending “ay.” So,

You type: java pig all gaul is divided into three parts

It types: allay aulgay isay ividedday intoay eethray artspay

We’ll simplify our life further by agreeing that ‘y’ is a consonant.

1.7.1 Vowels

This time, let’s start from the bottom. Presumably, we’ll need to know whether a
letter is a consonant. Here’s a brute-force way:
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static boolean isVowel (char x) {

return x == ’a’ || x == ’e’ || x == ’i’ || x == ’o’ || x == ’u’;

}

(This method has default access; I haven’t labeled it specifically private or public.
Most of the time, in fact, this is fine, although it is often good discipline (that is,
leads to cleaner programs) to keep things as private as possible.)

Aside: Tedious programs. When you find yourself writing a particularly te-
dious expression, it’s often a hint to look around for some shortcut (you will prob-
ably spend longer looking for the shortcut than you would grinding through the
tedium, but you are likely to learn something that you can use to relieve later
tedium). For example, if you browse through the detailed documentation for the
String type (see, for example, §9.2), you’ll find the useful function indexOf, which
returns the first point in a string where a given character appears, or −1 if it doesn’t
appear at all. Then the return statement above is simply

return ("aeiou").indexOf (x) >= 0;

1.7.2 Translation

Now let’s turn to the problem of actually re-arranging a string. We’ve already seen
all the parts: substring will extract a piece of a string, and ‘+’ will concatenate
strings. So, if we just knew how many consonants there were at the beginning of a
word, w, the translation would just be

w.substring (k) + w.substring (0, k) + "ay"

where k is the number of consonants at the beginning of w. This expression works
for any value of k between 0 and the length of w, inclusive. But which value to
choose? Again, we put that off until tomorrow:

/** Translation of W (a single word) into Pig Latin. */

static String toPig (String w) {

return w.substring (consonants (w)) + w.substring (0, consonants (w)) + "ay";

}

/** The number of consonants at the beginning of W (a single word). */

static int consonants (String w) {

/*{ return the number of consonants at start of W }*/;

}

1.7.3 Counting Consonants

Assume now that tomorrow has arrived, let’s consider how to implement consonants,
again using a guarded command approach. Look for easy (or “base”) cases. Clearly,
we return 0 if w is empty:
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if (w.length () == 0)

return 0;

else

/*{ return the number of consonants at start of W,
assuming W is not empty }*/;

Likewise, in the remaining case, we should return 0 if w starts with a vowel:

if (w.length () == 0)

return 0;

else if (isVowel (w.charAt (0)))

return 0;

else

/*{ return the number of consonants at start of W,
assuming W starts with a consonant }*/;

Finally, a word that starts with a consonant clearly has one more consonant at the
beginning than the “tail” of that word (the word with its first letter removed):

if (w.length () == 0)

return 0;

else if (isVowel (w.charAt (0)))

return 0;

else

return 1 + consonants (w.substring (1));

and there’s nothing left to do. Optionally, we can condense things a bit, if desired:

if (w.length () == 0 || isVowel (w.charAt (0)))

return 0;

else

return 1 + consonants (w.substring (1));

Again, this program exemplifies a typical feature of the functional programming
style: we’ve assembled a method from a collection of facts about the problem:

• An empty string has no consonants at the beginning.

• A string that starts with a vowel has no consonants at the beginning.

• A string that isn’t empty and doesn’t start with a vowel has one more conso-
nant at the beginning than its tail does.

We could actually have written these independently and in any order and with
redundant guards; for example:

if (w.length () > 0 && !isVowel (w.charAt (0)))

return 1 + consonants (w.substring (1));

else if (w.length () > 0 && isVowel (w.charAt (0)))

return 0;
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else if (w.length () == 0)

return 0;

// Should never get here.

(Java compilers, being none too bright, will complain that we might not execute a
return, but we know the cases are exhaustive.) However, we usually take advantage
of the cases we’ve already eliminated at each step to shorten the tests.

Cutting expenses. As it happens, the substringmethod in Java is considerably
more expensive than charAt. So we might consider ways to use the latter exclusively.
For example,

/** The number of consonants at the beginning of W (a single word). */

static int consonants (String w) {

return consonants (w, 0);

}

/** The number of consonants at the beginning of the substring of W

* that starts at position K. */

static int consonants (String w, int k) {

/*{ return the number of consonants immediately at and
after position k start of w }*/;

}

For the body of this second consonants method, we can use the the same facts as
before, expressed slightly differently:

if (w.length () <= k || isVowel (w.charAt (k)))

return 0;

else

return 1 + consonants (w, k+1);

This new consonantsmethod is a generalization of the original; it can count conso-
nants anywhere in a word, not just at the front. As a result, the resulting function
is arguably smaller and cleaner than our first version. Generalization often has
this effect (and just as often makes things more complex than they have to be—
programming will always require judgment).

1.7.4 To the top

Finally, we want to apply toPig to each of the command-line arguments and print
the results. With what you’ve seen so far, an approach rather like the last version
of consonants seems reasonable:

class pig {

public static void main (String[] words) {

translate (words, 0);

System.out.println ();
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}

/** Print the translations of SENT[K], SENT[K+1], ..., all on one line */

static void translate (String[] sent, int k) {

...

}

In this case, translate doesn’t have to do anything if k is already off the end of
the array sent (for “sentence”). Otherwise, it has to print the translation of word
#k, followed by the translations of the following words. So,

if (k < sent.length) {

System.out.print (toPig (sent[k]) + " ");

translate (sent, k+1);

}

which completes the program.

1.8 Variables and Assignment

Method signatures and documentation comments are abstractions of actions. When
you write translate in the main program of §1.7, you should be thinking of “trans-
lation into Pig Latin,” and not the details of this procedure, because any method
that correctly translates a word into Pig Latin would serve the main program, not
just the one you’ve happened to write. Likewise, the formal parameters of methods
are abstractions of values. For example, k in the translate method of the last sec-
tion refers to “the index of the first word to translate,” rather than any particular
value.

Formal parameters are a particular kind of variable. Although in some ways
similar to mathematical variables, they aren’t quite the same thing: whereas in
mathematics, a variable denotes values, in computer languages they denote con-
tainers of values. The difference is that computer languages provide an assignment
operation, which in Java is written = (a choice inherited from Fortran, and requiring
the use of == for equality). The expression

x = 43

has 43 as its value, but also has the side effect of placing the value 43 in the
container x. Until this value is replaced by another assignment, any use of x yields
the value 43. An expression such as

x = x + 2;

first finds the value (contents) of x, adds 2, and then places the result back in x.
This particular sort of statement is so common that there is a shorthand4:

4You’ll find that most C, C++, and Java programmers also use another shorthand, x++ or ++x,
to increment x by one. You won’t see me use it, since I consider it a superfluous and ugly language
misfeature.
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x += 2

as well as -=, *=, etc.
This last example demonstrates something confusing about variables: depending

on where it is used, x can either mean “the container named x” or “the value
contained in the container named x”. It has the first meaning in what are called
left-hand side contexts (like the left-hand side of an assignment operator) and the
second in right-hand side or value contexts.

You can introduce new variables as temporary quantities in a method by using
a local-variable declaration, with one of the following forms:

Type variable-name;
Type variable-name = initial-value;

For example,

int x;

String[] y;

double pi = 3.1415926535897932383;

double pi2 = pi * pi;

A declaration with initialization is just like a declaration of a variable followed by
an assignment. With either of these forms, you can save some typing by re-using
the Type part:

int x, y;

int a = 1, b = 2, c;

Be careful with this power to abbreviate; compactness does not necessarily lead to
readability.

If you’re used to typical scripting languages (like Perl or Python), or to Lisp
dialects (such as Scheme), you may find it odd to have to say what type of value
a variable contains. However, this requirement is common to most “production”
languages these days. The original purpose of such static typing was to make it
easier for compilers to produce fast programs. Although some authors praise the
“radical” and “liberating” alternative of having no restrictive variable types (dy-
namic typing), experience suggests that static typing provides both useful internal
consistency checking and documentation that is of increasing value as programs
start to become large.

With the program features we’ve seen so far, local variables and the assignment
statement are theoretically unnecessary. When we look at iterative statements in
the next section, you’ll see places where local variables and assignment become
necessary. Still, they can provide shorthand to avoid repeating expressions, such as
in this rewrite of a previous example

static String toPig (String w) {

int numCon = consonants (w);

return w.substring (numCon) + w.substring (0, numCon) + "ay";

}
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or this example, involving an if statement:

Version 1:

if (x % k == 0)

System.out.println (x + " is divisible by " + k);

else

System.out.println (x + " is not divisible by " + k);

Version 2:

String sense;

if (x % k == 0)

sense = " ";

else

sense = " not ";

System.out.println (x + " is" + sense + "divisible by " + k);

They may also be used for breaking up huge, unreadable expressions into bite-sized
pieces:

Version 1: tanh = u / (1.0 + u*u / (3.0 + u*u / (5.0 + u*u / 7.0)));

Version 2:

double u2 = u*u, tanh;

tanh = 7.0;

tanh = 5.0 + u2/tanh;

tanh = 3.0 + u2/tanh;

tanh = 1.0 + u2/tanh;

tanh = u / tanh;

This example also shows another use of a variable (u2) to represent a repeated
expression.

1.9 Repetition

In the Scheme language, a tail recursive method (one in which the recursive call is
the last operation in the method, like printPrimes in §1.6.3) is always implemented
in such a way that the recursive calls can go on indefinitely (to any depth)—in
Scheme, printPrimes would consume the same amount of computer memory for
all values of its arguments. The typical imperative “production” languages in use
today (including Java) do not put this requirement on their compilers, so that it
is possible for the original Java version of printPrimes to fail for large values of
limit. To a large extent, this difference is historical. Defining a function in the early
algebraic languages (from which Java, C, and C++ descend) was a much less casual
occurrence than in current practice and functions tended to be larger. Programmers
relied on other methods to get repetitive execution. That tendency has survived,
although the culture has changed so that programmers are more willing to introduce
function definitions.

As a result, most commonly used languages include constructs for expressing
repetition (or iteration). These come in two flavors: those where the (maximum)
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number of repetitions is explicit (definite iteration) and those in which repetition
terminates when some general condition is met and the number of repetitions is not
directly expressed (indefinite iteration).

1.9.1 Indefinite iteration

Consider the problem of computing the gcd (greatest common divisor) of two non-
negative integers—the largest integer that divides both. Recursively, this is easy
using the method of guarded commands. First, we notice that if one of the numbers
is 0, then (since every positive integer divides 0), the other number must be the
gcd:

/** The greatest common divisor of A, and B, where A,B >= 0 */

static int gcd (int a, int b)

{

if (b == 0)

return a;

else

return /*( the gcd of a and b, given that b != 0 )*/;

}

Next, we use the fact that if a = r mod b for the remainder 0 ≤ r < b, then the gcd
of b and r is the same as the gcd of a and b:

/** The greatest common divisor of A, and B, where A,B >= 0 */

static int gcd (int a, int b)

{

if (b == 0)

return a;

else

return gcd (b, a % b);

}

[Why does this terminate? What is the variant here?]

Were you to do this on a small slate (with limited space), you might end up
re-using the same space for each new set of values for a and b. You would then be
treating a and b as local variables and you would think of the process as something
like “keep repeating this calculation, changing a and b until b = 0.” In Java, we
might write this:

static int gcd (int a, int b) {

while (b != 0) {

int b1 = a % b;

a = b; b = b1;

} // Now b == 0

return a;

}
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This last program’s relationship to the preceding recursive version might be a little
clearer if we re-write the former like this:

static int gcd (int a, int b)

{

if (b != 0)

return gcd (b, a % b);

return a;

}

A statement of the form

while (condition) statement

means “if condition evaluates to false, do nothing (“exit the loop”); otherwise exe-
cute statement (called the loop body) and then repeat the entire process.” Another
way to say the same thing is that the while loop is equivalent to

if (condition) {

statement
while (condition) statement

}

This is a recursive definition, with the inner while loop functioning as the recursive
“call.”

Thewhile loop tests whether to terminate before each iteration. It is sometimes
desirable to test after each iteration, so that the loop body is always executed at
least once. For example, in a program that communicates with its users using a
simple text-based interface, you’ll often want to prompt for a response, read the
response, and repeat the process until the response is legal. For this purpose, there
is a do-while loop:

String response;

do {

System.out.print ("Proceed? [y/n] ");

response = readWord ();

} while (! (response.equals ("y") || response.equals ("n")));

(Assume that readWord reads the next whitespace-delimited word typed as input.)
This loop corresponds to the following recursive function:

static String getResponse () {

System.out.print ("Proceed? [y/n] ");

String response = readWord ();

if (response.equals ("y") || response.equals ("n"))

return response;

else

return getResponse ();

}
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Many loops fall into neither of these categories. Instead, one discovers whether
to stop only in the middle of a computation. For this purpose, Java has a general-
purpose exiting construct, break, which in its simplest form ends execution of
the enclosing loop. For example, suppose that we want to prompt for and read a
sequence of words from some input source and print their Pig Latin translations,
one per line, until we get to a single period. We could write

String word;

System.out.print ("> ");

word = readWord ();

while (! word.equals (".")) {

System.out.println (word + " => " + toPig (word));

System.out.print ("> ");

word = readWord ();

}

but the repetition of the statements for prompting and reading is a little annoying.
With break, we can use a “loop and a half,” like this:

while (true) {

System.out.print ("> ");

word = readWord ();

if (word.equals ("."))

break;

System.out.println (word + " => " + toPig (word));

}

The “while (true)” statement loops indefinitely, since its condition is, of course,
never false. It is only stopped by the break statement in the middle of the loop
body.

Question: What do these two loops do?

while (false) { do {

System.out.println ("Hello!"); System.out.println ("Hello!")

} } while (false);

1.9.2 Definite Iteration

Consider the computation of N !, the factorial function, which for non-negative
integers is defined by the recurrence

0! = 1

(N + 1)! = (N + 1) ·N !
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or to write it out explicitly5,

N ! = 1 · 2 · · ·N =
∏

1≤k≤N

k.

The recurrence suggests a recursive definition6:

/** N!, for N >= 0. */

static long factorial (long N) {

if (N <= 0)

return 1;

else

return N * factorial (N-1);

}

I’ve chosen to use type long because the factorial function grows quickly, and long

is an integer type that accommodates values up to 263 − 1 (slightly less than 1019).
Now this last function is not tail-recursive; it multiplies by N after the recursive

call. A simple trick makes it tail recursive—we compute a running product as an
extra parameter:

static long factorial (long N) {

return factorial (N, 1);

}

/** N! * P, assuming N >= 0. */

static long factorial (long N, long p) {

if (N <= 0)

return p;

else return factorial (N-1, p*N);

}

This function is now amenable to being converted to a loop directly:

static long factorial (long N0) {

long p, N;

N = N0; p = 1;

while (N > 0) {

p *= N; // Means p = p*N

N -= 1; // Means N = N-1

}

return p;

}

5The symbol
∏

means “product of” just as
∑

means “sum of.” When N is 0, so that you have
an empty product, mathematical convention makes the value of that product 1, the multiplicative
identity. By the same token, an empty sum is 0 by convention, the additive identity.

6This function yields 1 if given a negative argument. Since negative arguments are illegal (says
the comment), the function may yield any result—or even fail to terminate—and still conform to
the “letter of the specification.” Therefore, substituting ≤ for = in the test is perfectly correct.
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The call factorial(N,1) corresponds to initializing p to 1. This is a typical example
of a reduction loop used to perform a certain binary operation on a sequence of
values. The variable p serves as the accumulator.

This loop fits a very common pattern: one variable (here, N) is first initialized,
and then incremented or decremented each time through a loop until it reaches
some limit. The loop therefore has a predictable maximum number of iterations
each time it is started. Numerous programming languages (FORTRAN, Algol,
Pascal, and Ada, to name just a few) have special definite iteration constructs for
just such combinations of actions. The Ada version, for example is

p := 1;

for N in reverse 1 .. N0 loop

p := p*N;

end loop;

Here, N is a loop control variable, which is modified only by the loop statement and
may not be assigned to.

Instead of having a restricted definite iteration like other languages, Java (as in
C and C++) has a more general form, in which we explicitly write the initialization,
bounds test, and increment in one statement:

long p, N;

p = 1;

for (N = N0; N > 0; N -= 1)

p *= N;

return p;

This for statement is little more than a compact shorthand for a while loop with
some initial stuff at the beginning. In general,

for (S0; C; S1)

B ⇐⇒

{ S0;

while (C) {

B
S1

} }

If you take this equivalence literally, you’ll see that it’s also legal to write

long p;

p = 1;

for (long N = N0; N > 0; N -= 1)

p *= N;

declaring the loop-control variable in the loop itself.
In this case, since multiplication is commutative, we can also write

long p;

p = 1;

for (long N = 1; N <= N0; N += 1)

p *= N;
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and get the same effect. For whatever reason, incrementing loops like this tend to
be more common than decrementing loops.

The three parts of a for statement all have defaults: the test is true if omitted,
and the other two parts default to the null statement, which does nothing. Thus,
you will find that many programmers write an infinite loop (while (true). . . ) as

for (;;) ...

1.9.3 Example: Iterative Prime-Finding

Let’s look at what happens when we replace the recursive methods in §1.6 with
iterative constructs. First, let’s start with the original prime-testing methods from
that section, re-arranged slightly to make the conversion clear:

private static boolean isPrime (int x) {

if (x <= 1)

return false;

else

return ! isDivisible (x, 2);

}

private static boolean isDivisible (int x, int k) {

if (k < x) {

if (x % k == 0)

return true;

else

return isDivisible (x, k+1);

}

return false;

}

Using essentially the same techniques we used for factorial, we get the following
iterative version for isDivisible:

private static boolean isDivisible (int x, int k) {

while (k < x) {

if (x % k == 0)

return true;

k += 1;

}

return false;

}

which we may also code as a for loop with a null initialization clause:

for (; k < x; k += 1)

if (x % k == 0)

return true;

return false;
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Now we can actually get rid of the isDivisible method altogether by integrating
it into isPrime:

private static boolean isPrime (int x) {

if (x <= 1)

return false;

for (int k = 2; k < x; k += 1)

if (x % k == 0)

return false;

return true;

}

Since isPrime evaluates ! isDivisible(x, 2), we had to be careful also to reverse
the sense of some of the return values.

Similar manipulations allow us also to convert printPrimes:

/** Print all primes up to and including LIMIT, 10 to a line. */

private static void printPrimes (int limit) {

int n;

n = 0;

for (int L = 2; L <= U; L += 1) {

if (isPrime (L)) {

if (n != 0 && n % 10 == 0)

System.out.println ();

System.out.print (L + " ");

n += 1;

}

}

System.out.println ();

}

(The full syntax of for actually allows us to make this even shorter by replacing the
first three lines of the body with

for (int L = 2, n = 0; L <= U; L += 1) {

but I am not sure that this is any clearer.)

1.9.4 Example: Counting

The consonant-counting method in the Pig Latin translator (§1.7.3) looked like this:

/** The number of consonants at the beginning of W (a single word). */

static int consonants (String w) {

return consonants (w, 0);

}

static int consonants (String w, int k) {



42 CHAPTER 1. JAVA OVERVIEW

if (w.length () <= k || isVowel (w.charAt (k)))

return 0;

else

return 1 + consonants (w, k+1);

}

This looks like a reduction loop, as introduced in §1.9.2, except that we stop pre-
maturely at the first vowel. Indeed, we can use the same structure:

static int consonants (String w) {

int n;

n = 0;

for (int k = 0; k < w.length () && ! isVowel (w.charAt (k)); k += 1)

n += 1;

return n;

}

1.10 Arrays II: Creation

You saw arrays in §1.5, where they were used as the argument to the main program.
Array types are the most basic type used to hold sequences of items. If T is any
type (so far, we’ve seen int, long, char, double, boolean, and String), then
‘T[]’ denotes the type “array of T .” This definition is completely recursive, so that
‘T[][]’ is “array of array of T .”

The array types are examples of what are called reference types in Java. This
means that a declaration such as

int[] A; // (1)

tells us that at any given time, A contains either a reference (or pointer) to an array
of ints, or it contains something called the null pointer, which points at nothing
(not even at an array containing 0 ints). For example, A declared above initially
contains a null pointer, and after

A = new int[] { 3, 2, 1 }; // (2)

it contains a pointer to an array containing 3 ints: A[0]==3, A[1]==2, A[2]==1.
You should keep pictures like this in your mind:

After (1): A:

After (2): A: 3 2 1

As illustrated in statement (2) above, one creates a new array for A to point
to with the new operator. More commonly, you’ll simply want to create an array
of a given size first, and fill in its contents later. So you’ll often see statements or
declarations like these:
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A = new int[100];

int[] B = new int[A.length];

which make A and B point at 100-element arrays, initially containing all 0’s.

The syntax in (2) is convenient when using arrays to contain constant tables
of values. For this purpose, Java (following C) allows a slightly condensed syntax
when (and only when) you combine array declaration with creation. The following
declaration, for example, is equivalent to (2):

int[] A = { 3, 2, 1 };

1.10.1 Example: Linear Interpolation

Interpolation is a procedure for approximating the value of a function at some point
where its value is unknown from its (known) values at surrounding, known points. If
the function is reasonably well-behaved (that is, continuous, and with a sufficiently
small second derivative), one can linearly interpolate y = f(x), given yi = f(xi) and
yi+1 = f(xi+1), with xi ≤ x ≤ xi+1 and xi 6= xi+1 as

y ≈ yi + (yi+1 − yi) ·
x− xi

xi+1 − xi
(1.1)

We’d typically have an ascending sequence of xi and would choose the two that
bracketed our desired x.

Suppose we’d like to write a program to carry out linear interpolation. Actu-
ally, with such a common, useful, and well-defined procedure as interpolation, we’d
probably be best advised to cast it as a general-purpose method, rather than a main
program. This method would take as its arguments an ordered array of xi values,
an array of corresponding yi (that is f(xi)) values, and a value x. The output would
be our approximation to f(x):

public class Interpolate {

/** Given XI in strictly ascending order, YI with

* 0 < XI.length = YI.length, and X with

* XI[0] <= X <= XI[XI.length-1], a linear approximation

* to a function whose value at each XI[i] is YI[i]. */

public static double eval (double x, double[] xi, double[] yi)

{

For some i such that x >= xi[i] and x <= xi[i+1],

return

yi[i] + (yi[i+1] - yi[i]) * ((x - xi[i]) / (xi[i+1] - xi[i]));

}

}
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You should be able to see that the return expression is just a transcription of
formula (1.1).

To find i, an obvious approach is to work our way along xi until we find an
adjacent pair of values that bracket x. We can use a for loop, like this:

for (int i = 0; ; i += 1)

if (xi[i] <= x && x <= xi[i+1])

return · · ·;

The return statement has the effect of exiting the loop as well as returning a value.
Since the documentation on this method requires that there be some i satisfying
the if statement, we know that the function must eventually execute the return, if
it is called properly.

This raises a more general, and very important, engineering issue: what to do
when a caller violates the “contract” established by a documentation comment. In
this case, Java will catch such violations indirectly. If there is no value of i that
works properly, or if the length of yi is shorter than that of xi, a call to this method
will eventually cause an exception when the program tries to perform an array
indexing operation with an index that’s “off the end” of the array. We’ll talk about
these more in §1.15. For now it suffices to say that causing (in Java terminology,
throwing) an exception halts the program with a somewhat informative message.

1.10.2 Example: The Sieve of Eratosthenes

We’ve considered one way to find all primes by using a function that determines
whether any particular integer is prime. There are ways to do compute primes “by
the batch,” one of the simplest of which is the sieve of Eratosthenes. The idea
behind this algorithm is to find primes one at time, and for each prime found, to
immediately eliminate all multiples of the prime from any further consideration.
Conceptually, we start with a sequence of integers, like this:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Starting at the left, we find the next empty box. Since it is marked ‘2’, we cross off
every second box, starting from 22 = 4, giving

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

The process now repeats. The next empty box is marked ‘3’, so we cross off each
third box, starting from 32 = 9, giving

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Now cross off every fifth box starting from 52 = 25, giving

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

No further work is needed (since 72 is off the end of our sequence), and the boxes
that remain empty correspond to primes.

Why does this work? Basically, it is set up in such a way that we cross off every
number that is divisible by some smaller prime. Since the primes are not divisible
by smaller primes, they are never crossed off. We can start crossing starting off at
the square because we know that if a prime p divides a composite number q < p2,
then q will already have been crossed off. This is because q/p is a factor of q and
q/p < p if q < p2. So we crossed off q either when we processed q/p (if it is prime)
or when we processed one of its (smaller) prime factors.

Java has no direct notion of “boxes that can be crossed off,” so we must find a
way to represent these with the constructs we do have. A convenient possibility is
to use an array of boolean values, with, say false meaning “not crossed off yet”
(possibly prime) and true meaning “crossed off” (definitely composite). Here is
one possible implementation:

/** Returns an array, p, of size N+1 such that p[k] is true iff

* k is a prime. */

public static boolean[] primes (int n)

{

boolean[] sieve = new boolean[n+1];

// All entries are initially false.

sieve[0] = sieve[1] = false;

for (int k = 2; k*k <= n; k += 1) {

/* If k is prime (has not been crossed off), then */

if (! sieve[k]) {

/* Cross of every k’th number, starting from k*k */

for (int j = k*k; j <= n; j += k)

sieve[j] = true;

}

}

return sieve;

}

To use this function in printPrimes (page 41):

private static void printPrimes (int limit) {

boolean[] isPrime = primes (limit);

int n;

n = 0;
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for (int L = 2; L <= U; L += 1) {

if (isPrime[L]) {

if (n != 0 && n % 10 == 0)

System.out.println ();

System.out.print (L + " ");

n += 1;

}

}

}

1.10.3 Multi-dimensional Arrays

As the illustrations suggest, an array is naturally thought of as a one-dimensional
sequence of things. Suppose, though, that we want to represent some sort of two-
dimensional table of values—something like a matrix in linear algebra. One pos-
sibility is to make creative use of a one-dimensional array. For example, represent
the matrix

A =






1 3 5 7
2 5 8 11
3 7 11 15






with the array

int[] A = { 1, 3, 5, 7, 2, 5, 8, 11, 3, 7, 11, 15 };

The problem is one of inconvenience for the programmer. Instead of typical math-
ematical notation such as Ai,j for the element at row i and column j, one is forced
to write A[i * 4 + j] instead (assuming rows and columns numbered from 0).
Therefore, programming languages devoted to scientific computation (where you do
this sort of thing a lot) usually have some notation specifically for multi-dimensional
arrays as well.

In Java, though, we can simply rely on the fact that arrays can be arrays of any
type of value, including arrays. So, our 3× 4 matrix, above, may be represented as
an array of 3 4-element integer arrays:

int[][] A;

A = new int[][] { new int [] { 1, 3, 5, 7 },

new int [] { 2, 5, 8, 11 },

new int [] { 3, 7, 11, 15 } };

or, since this is very tedious to write, we can put everything into the declaration of
A, in which case we are allowed a little abbreviation:

int[][] A = { { 1, 3, 5, 7 }, { 2, 5, 8, 11 }, { 3, 7, 11, 15 } };
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Diagrammatically,

A :

1 3 5 7

2 5 8 11

3 7 11 15

Now A[i] gives us the entire ith row and A[i][j] gives us Aij .
As for one-dimensional arrays, we also have the option of creating a “blank”

array, and later filling it in, as in this program to create a Hilbert matrix, which is











1 1/2 1/3 1/4 · · ·
1/2 1/3 1/4 1/5 · · ·
1/3 1/4 1/5 1/6 · · ·
1/4 1/5 1/6 1/7 · · ·
...

...
...

...











public static double[][] Hilbert (int N) {

double[][] result = new double[N][N];

for (int i = 0; i < N; i += 1)

for (int j = 0; j < N; j += 1)

result[i][j] = 1.0 / (i + j + 1);

return result;

}

Although nice rectangular arrays such as these are the most common, the rows
are all quite independent of each other, and nothing keeps us from creating more
irregular structures, such as this version of Pascal’s triangle (in which each square
contains either 1 or the sum of the two squares above it):

P :

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Here’s a possible program for this purpose:

public static int[][] Pascal (int N) {

// Create array of N initially null rows.

int[][] result = new int[N][];

for (int i = 0; i < N; i += 1) {

// Set row #i to a row of i+1 0’s.
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result[i] = new int[i+1];

// The ends of the row are 1.

result[i][0] = result[i][i] = 1;

for (int j = 1; j < i; j += 1)

result[i][j] = result[i-1][j-1] + result[i-1][j];

}

return result;

}

1.11 Introduction to Objects

In §1.10, I mentioned that array types are examples of reference types, types in which
the values are pointers to things (objects) that themselves can contain variables. The
type String is another example. A simple variable of a reference type conceptually
looks like one of the pictures below:

Var1:

Var2:
42

Var3:

The variable Var1 doesn’t point at anything; it contains a null pointer, appropriately
denoted null in Java. The variables Var2 and Var3 both contain pointers to the
same object.

This particular object contains two variables, one an integer, and one a (null)
pointer. You’ve already seen how to get at these variables (instance variables) in
the case of an array: for an array pointed to by A, they are referred to A.length

and A[i] for non-negative i < A.length (the latter are usually called the elements
of A). Arrays, however, are a special case. Let’s look at some more typical objects.

1.11.1 Simple Object Type Definition and Creation

So far, we’ve used class declarations simply to contain static methods. They actually
have another use: each class definition introduces a new type of object. For example,
let’s start with this simple declaration:

/** A point in 2-dimensional Euclidean space */

class Point {

double x, y;

other definitions
}

This tells us that Point is a type of object that contains two instance variables. A
variable declaration such as
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Point A, B;

tells us that A and B can contain pointers to Point objects. Initially, however, A
and B contain null pointers. The expression new Point() has as its value a new
(i.e., never-before-seen) pointer to a Point object, so that after

A = new Point ();

B = new Point ();

A and B do point to Point objects. The instance variables are now available as A.x
and A.y, so that after

A.x = 16.0; A.y = 1.2;

B.x = A.x / 2.0; B.y = A.y / 2.0;

we have

A:

B:
x: 16.0

y: 1.2

x: 8.0

y: 0.6

It’s probably not too early to emphasize that A and B contain pointers, not
Point objects. To see why this distinction matters, consider the result of

B = A;

B.x = 42.0; B.y = 19.0;

System.out.println ("A.x = " + A.x + ", A.y = " + A.y);

Here’s what gets printed:

A.x = 42.0, A.y = 19.0

despite the fact that we never explicitly assigned to A.x or A.y. Here’s the final
situation pictorially:

A:

B:
x: 42.0

y: 19.0

x: 8.0

y: 0.6

As you can see, the object originally pointed to by B has not been changed
(despite the assignment B = A), only B (the pointer variable) has changed so that
it now contains the same contents (arrow) as does A. The values of A and B are
pointers, not objects.
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1.11.2 Instance Methods

The centrality of classes in the syntax of Java reflects an underlying philosophy of
program construction, object-based programming, characterized by having programs
organized by types of object. That is, the actual executable code is collected into
methods that are themselves grouped by class (object type). From the programmer’s
point of view, a type of object is characterized by the operations that may be
performed on it. We’ve seen one kind of operation: selection of fields (like x and y

above) using ‘.’ syntax. More generally, we’d like to be able to introduce arbitrarily
complex operations; for this purpose we use methods.

So far, we’ve looked only at static methods, which correspond to ordinary sub-
programs such as are found in all programming languages. Like other object-based
languages, Java provides an additional kind of method—an instance method—that
is intended to be used on objects of a class. For example, suppose that we’d like to
know how far a particular Point is from the origin. We might first try expanding
the class as follows:

class Point {

double x, y;

/** Distance from P to the origin. */

static double dist (Point p) {

return Math.sqrt (p.x * p.x + p.y * p.y);

}

}

And now, given a point Q, we write Point.dist(Q) to get its length. However,
most Java programmers would write dist differently:

/** Distance of THIS from the origin. */

double dist () {

return Math.sqrt (this.x * this.x + this.y * this.y);

}

Since we don’t say static, this version of dist is an instance method . To use it on
Q, we write Q.dist().

The change is largely “syntactic sugar.” In effect, an instance method, f , that
is defined in a class named C

• Has an implicit first parameter that is not listed in the parameter list. The
formal type of the parameter is C and its name is this;

• Is called using the syntax E.f (· · ·), where E evaluates to a (non-null) C. E
becomes the value of this, the implicit first parameter.

That is, the instance-method version of dist corresponds roughly to a static method
declared:

static double dist (Point this) { ... }
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and Q.dist() corresponds to Point.dist(Q) (however, this is reserved and you
may not use it explicitly as a parameter name)7.

As an additional shorthand, inside the methods of Point, the names of instance
methods and variables are automatically prefixed with ‘this.’ if they appear bare.
So for example, we could write

class Point {

double x, y;

double dist () {

return x*x + y*y;

}

}

and the occurrences of x and y in dist are equivalent to this.x and this.y

1.11.3 Constructors

One particularly useful kind of method takes control at the time a new object is
created. These are called constructors, and have their own special syntax; for our
running example:

class Point {

double x, y;

/** A point whose coordinates are (x,y) */

public Point (double x, double y) {

this.x = x; this.y = y;

}

...

}

The constructor is distinguished by having the same name as the class and no return
type8. With this addition to Point, we may rewrite some previous initializations
like this:

A = new Point (16.0, 1.2);

B = new Point (A.x / 2.0, A.y / 2.0);

In the absence of any explicit constructor, Java defines one with no parameters
for you (which does nothing). However, now that we’ve defined a Point constructor,

7At this point, you may wonder why the designers of Java (and many previous object-based
languages such as C++) chose such an annoyingly different syntax for instance methods. Your
author wonders the same thing. This “worship of the first parameter” appears to be an historical
accident resulting from somebody’s bright idea unfortunately taking root. What can I say? It
happens.

8Again, your author finds the introduction of new syntax for this purpose to be completely
unjustified. This particular piece of gratuitous irregularity is inherited from C++.
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Java doesn’t automatically supply one and we can no longer write new Point(). If
we still need to do so, we can introduce another definition:

/** A point whose coordinates are (x,y) */

public Point (double x, double y) {

this.x = x; this.y = y;

}

/** The point (0,0) */

public Point () { }

This is an example of overloading—the use of the same name (in this case, the same
constructor name) for two different functions, distinguished by how we call them.

1.11.4 Example: A Prime-Number Class

In §1.10.2, we saw how to compute batches of prime numbers, using an array as the
data structure. Let’s look at a typically object-based way of packaging the prime
number sieve.

The main philosophical idea behind this design is that from the point of view
of someone who needs to use prime numbers, the sieve is a set of prime numbers
and the most important operation is a membership test: Is x in the set of prime
numbers? This suggests a class that looks like this:

/** A finite set of prime numbers */

public class PrimeSieve {

/** The set of prime numbers <= N. */

public PrimeSieve (int N) { ... }

/** A number, N, such that THIS contains exactly the primes <= N.

* (This was the number supplied to the constructor.) */

public int limit () { ... }

/** Returns true iff X is in THIS. */

public boolean contains (int x) { ... }

...

}

I have been a bit more careful than usual, and used public to indicate that the
class, its constructor, and the limit and containsmethods are intended to be used
anywhere in the program.

To complete the implementation of PrimeSieve, we copy in the pieces from
§1.10.2 to give the result in Figure 1.2. This time, the actual sieve representation
(the array) is declared to be private, and therefore not directly available outside
of PrimeSieve. Since the only code that can touch the instance variable sieve is
what’s written here, we can be sure that as long as the program text in PrimeSieve

works, these methods will give the answers their comments call for.
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Finally, here’s how we modify printPrimes to use this new class:

private static void printPrimes (int limit) {

PrimeSieve primes = new PrimeSieve (limit);

int n;

n = 0;

for (int L = 2; L <= U; L += 1) {

if (primes.contains (L)) {

if (n != 0 && n % 10 == 0)

System.out.println ();

System.out.print (L + " ");

n += 1;

}

}

}

1.12 Interfaces

Let’s break up the printPrimes method in §1.11.4 into a piece that knows about
primes and one that knows about printing (on page 53):

private static void printPrimes (int limit) {

printSet (new PrimeSieve (limit));

}

static void printSet (PrimeSieve set) {

int n;

n = 0;

for (int L = 0; L <= set.limit (); L += 1) {

if (set.contains (L)) {

if (n != 0 && n % 10 == 0)

System.out.println ();

System.out.print (L + " ");

n += 1;

}

}

}

I’ve modified the for loop in printSet so that it no longer assumes that the smallest
prime is 2. As a result, the body of printSet would correctly display any set of
non-negative numbers that provided limit and contains methods.

Java allows us to capture this fact by defining an interface that describes simple
sets of non-negative integers:
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/** A finite set of prime numbers */

public class PrimeSieve {

/** The set of prime numbers <= N. Requires N >= 0. */

public PrimeSieve (int N) {

sieve = new boolean[N+1];

for (int i = 2; i <= n; i += 1)

sieve[i] = true;

for (int k = 2; k*k <= n; k += 1) {

if (sieve[k]) {

for (int j = k*k; j <= n; j += k)

sieve[j] = false;

}

}

}

/** A number, N, such that THIS contains exactly the primes <= N.

* (This was the number supplied to the constructor.) */

public int limit () { return sieve.length - 1; }

/** Returns true iff X is in THIS. */

public boolean contains (int x) {

if (x < 0 || x >= sieve.length)

return false;

return sieve[x];

}

private boolean[] sieve;

}

Figure 1.2: The Sieve of Eratosthenes as a Java class.
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/** A bounded set of natural numbers. */

public interface FiniteNaturalSet {

/** A number, N, such that all numbers in THIS are <= N. */

int limit ();

/** Returns true iff X is in THIS. */

boolean contains (int x);

}

There are no bodies for these methods: FiniteNaturalSet defines only what oper-
ations are available, not how they are to be done. Likewise, there is no constructor
because this interface does not define a particular kind of set, with a particular rep-
resentation, and there is no universal set of fields and initializations of those fields
that must be used by all possible objects that supply these two methods. With this
interface, we may now write

static void printSet (FiniteNaturalSet set) {

...

for (int L = 0; L <= set.limit (); L += 1) {

if (set.contains (L)) {

...

}

}

}

This will work for any FiniteNaturalSet, but to make it work again for our original
application, we have to indicate that a PrimeSieve is a kind of FiniteNaturalSet,
which we do like this:

public class PrimeSieve implements FiniteNaturalSet {

The rest of PrimeSieve is as before
}

(We also say that PrimeSieve is a subtype of FiniteNaturalSet.) So basically,
we’re back where we were before except that should we need to print other sets
of natural numbers, we will not have to write new versions of printSet. Instead,
printSet will, in effect, adapt itself to any variety of FiniteNaturalSet object we
pass to it, calling the contains and limit functions that were defined for that kind
of set.

For example, here’s a class that defines a set consisting of all perfect squares
within some range9:

public class SquareSet implements FiniteNaturalSet {

/** The set consisting of { LOW^2, (LOW+1)^2, ..., HIGH^2 },

* where 0 <= LOW, HIGH < square root of 231 */

public SquareSet (int low, int high) {

9You might have to puzzle over how contains works here. Go ahead; it’ll be good for you.
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this.low = low; this.high = high;

}

public int limit () { return high*high; }

public boolean contains (int x) {

if (x < low*low || x > high*high)

return false;

// Note: (int) E, where E is a double, truncates E (rounds toward

// 0) to an integer value.

int approx_root = (int) Math.sqrt (x);

return (approx_root*approx_root == x ||

(approx_root+1)*(approx_root+1) == x);

}

private int low, high;

}

so that now,

printSet (new SquareSet (1, 100))

prints all the squares up to 1002. As you can see SquareSet is very different from
PrimeSieve, even though both are FiniteNaturalSets. In particular, SquareSet
does not compute all the squares in its constructor, but tests each argument to
contains separately. All of this detail is irrelevant to printSet, and is hidden
behind the interface.

1.13 Inheritance

As it happens, interfaces are just special cases of classes, which actually provide a
more powerful facility. Specifically, interfaces are restricted not to contain instance
variables or implementations of methods. We could instead have written

public abstract class FiniteNaturalSet {

/** A number, N, such that all numbers in THIS are <= N. */

public abstract int limit ();

/** Returns true iff X is in THIS. */

public abstract boolean contains (int x);

}

and then

public class PrimeSieve extends FiniteNaturalSet { ... }

(note the different keyword). As was the case for implements, a PrimeSieve is a
FiniteNaturalSet by virtue of its declaration.
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The keyword abstract roughly means “not completely implemented here.” An
unimplemented method may not be called, and to enforce this, an object of an
abstract class may not be created (i.e., with new). This particular class must be
abstract because it contains abstract (bodiless) methods. In effect, the interface
keyword made all methods implicitly abstract and public. Unfortunately, it is not
quite that simple: one can implement any number of interfaces, but can extend only
one class.

Let’s consider another example. Suppose that you were writing a program that
dealt with geometrical figures in a plane—triangles, rhombi, circles, and the like.
We anticipate that we’ll need things like lists or sets that can contain any kind of
figure, so we’ll first need a general type that encompasses all figures. Its methods
should be things that make sense for any figure. The class shown in Figure 1.3
(page 58) is one possibility. I’ve crammed quite a few features into it, so it warrants
a bit of close study.

First, we see that there are two constructors, each of which constructs a Figure

at a specific reference point. Constructor (2) simply creates a new reference Point
and passes it to constructor (1); that’s the meaning of this(...) in the first line
of its body—“the other constructor whose only argument is a single Point.”

Next we see that some of the methods—type, location, translate, and one
contains method (4)—do have implementations. That’s because we can write a
sensible implementation for them that applies to all Figures. On the other hand,
we have no general way to compute the area or extent of a Figure, based on the
information given, so area, and one contains method are abstract. Once we know
how to compute contains(x,y), however, we can easily compute contains(p), so
the latter method is implemented. But how can it work if it calls an unimplemented
method? Wait and see.

Now let’s define a particular kind of Figure: a rectangle.

public class Rectangle extends Figure {

/** A Rectangle with sides parallel to the axes, width W,

* height H, and lower-left corner X0, Y0. */

public Rectangle (double x0, double y0, double w, double h) { // (7)

super (x0, y0);

this.w = w; this.h = h;

}

public String type () { // (8)

return "rectangle";

}

/** The area enclosed by THIS. */

public double area () { // (9)

return w * h;

}
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/** A closed figure in the plane. Every Figure has a "reference

* point" within it, which serves as the location of the Figure. */

public abstract class Figure {

/** A Figure with reference point P0. */

public Figure (Point p0) { // (1)

this.p0 = p0;

}

public Figure (double x0, double y0) { // (2)

this (new Point (x0, y0));

}

/** The generic name for THIS’s type of figure

* (e.g., "circle"). This is the default implementation. */

public String type () { // (3)

return "2d figure";

}

/** The area enclosed by THIS. */

public abstract double area ();

/** True iff (X,Y) is inside THIS. */

public abstract boolean contains (double x, double y);

/** True iff P is inside THIS. */

public boolean contains (Point p) { // (4)

return contains (p.x, p.y);

}

/** The reference point for THIS. */

public Point location () { return p0; } // (5)

/** Translate (move) THIS by DX in the x direction and DY in the

* y direction. */

public void translate (double dx, double dy) {// (6)

p0.x += dx; p0.y += dy;

}

/** A rough printable description of THIS. */

public String toString () {

return type () + " at (" + p0.x + ", " + p0.y + ")";

}

private Point p0;

}

Figure 1.3: The abstract class representing all Figures. Its constructors deal only
with its location.
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/* Continuation of Rectangle */

/** True iff (X,Y) is inside THIS. */

public boolean contains (double x, double y) {// (10)

Point p = location ();

return x >= p.x && x <= p.x+w

&& y >= p.y && y <= p.y+h;

}

private double w, h;

}

This class is not abstract—all its methods are implemented. Because it extends
Figure, it inherits all the fields and methods that Figure has. That is, the imple-
mentations of methods (4), (5), and (6) are effectively carried over into Rectangle

(so if R is declared

Rectangle R = new Rectangle (1.0, 2.0, 4.0, 3.0);

then R.location () gives its location, the point (1.0,2.0)).
Since a Rectangle is a Figure, the constructor (7) must first call the constructor

for Figure, which is the meaning of the “call” to super as the first line of its body.
Next, the Rectangle constructor initializes the instance variables that are specific
to it: w and h.

The Rectangle class provides implementations for area and the two-argument
contains method. The call R.contains(p) (on method (4)) will call the contains
method (10). A call on R.toString () will return the result

rectangle at (1.0, 2.0)

That is, even though toString is defined in Figure at (3), this call will use the type
function that is defined in Rectangle at (8). We say that definition (8) overrides
definition (3). (Likewise, (9) and (10) override the matching definitions in Figure,
but since the latter don’t have bodies, there is nothing terribly surprising in that
fact.)

What this all illustrates is that

A call on an instance (i.e., non-static) method A.f(· · ·) chooses which
matching definition of f to use depending on the current value of A.

So if A’s value is a pointer to a Rectangle, then the definition of f in the Rectangle
class prevails (if there is no such method, we use the inherited definition).

Question: To test that you understand this rule, suppose we added the following
method to the Figure class:

static void prt (Figure f) {

System.out.println (f.toString ());

}
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If we now execute the call

Figure.prt (new Rectangle (1.0, 2.0, 4.0, 3.0));

what happens?

Answer: Despite the fact that prt is defined in Figure and despite the fact that
its formal parameter, f, is declared to be a Figure, this call prints

rectangle at (1.0, 2.0)

just as before. It is the value of f (a pointer to a rectangle) that matters, not its
declared type. Yes, f points to a Figure, but it is a particular kind of Figure—
specifically a Rectangle.

1.14 Packages and Access Control

The keywords public, private, and protected are features of the Java language
that support what parts of your program have access to what instance variables,
classes, and methods. They add no programming power, but are intended instead
to support common notions of disciplined program design. The underlying idea is
simple. The designer of a particular class in effect makes a “contract” with the
users (clients) of the class that guarantees the behavior of particular methods. The
clients, for their part, must supply legal arguments to these methods, and must keep
their hands off the internals (methods and variables not mentioned in the contract).

The public keyword is a syntactic marker indicating classes and members that
are part of the contract. The other possible keywords (and the absence of a keyword)
indicate classes and members that are not part of the contract. Unfortunately, there
are various degrees of “confidentiality,” requiring more than one possible non-public
access level. The obvious kind is indicated by the keyword private: a private
member is accessible only within the actual text of a class definition; no outside
class knows about such members. When possible, make your non-public members
private. Sometimes, however, more than one class must participate in implementing
a feature, and perfect privacy is impractical.

For this purpose, Java allows us to group classes into packages, and to restrict
some information to the package. The standard Java library contains quite a few
packages. One of them, called java.lang, contains classes that are basic to the
language (like String). The declaration

package numbers;

public class PrimeSieve extends FiniteNaturalSet { ...

as the first statement in our previous example tells us that PrimeSieve is in the
package numbers, so that its full name (when referenced from outside the package) is
numbers.PrimeSieve. Many programs tend to have no package declaration, which
simply puts them in the anonymous package.

To look at a more generic case:



1.14. PACKAGES AND ACCESS CONTROL 61

package demo;

public class A { // (0)

public A (int x) { ... } // (1)

A () { ... } // (2)

void f () { ... } // (3)

protected g () { ... } // (4)

private h () { ... } // (5)

}

class B { // (6)

...

}

This tells us that declarations (2), (3), and (6) are package private: they may be
used only in package demo. As a result, in package demo, one can write new A(), but
outside one can only write new A(3). The restrictions on protected declaration (4)
are a little looser, classes that extend demo.A may also call g, even if those classes
are not in package demo.

You will find it annoying to denote classes by their full qualified names all the
time. This is especially true of the Java standard library classes—java.util.Map

is not a particularly enlightening elaboration of Map, for example. There are four
useful devices to alleviate this annoyance and let you use an unqualified or simple
name instead of the fully qualified name:

• The declaration

import java.util.Map;

at the beginning of a program (after any package declaration, and before any
class declaration) means that the simple name Map may be substituted for
java.util.Map in this file.

• The declaration

import java.util.*;

in effect imports all the classes in the package java.util.

• Finally, all programs have an implicit import java.lang.*; at the beginning.
Therefore, you can always write String rather than java.lang.String and
Object rather than java.lang.Object.

• Within the text of a definition in a package, names of other classes and inter-
faces in the package don’t have to be qualified.



62 CHAPTER 1. JAVA OVERVIEW

1.15 Handling Exceptional Cases

A sad fact of software life is that inordinate amounts of programmers’ time is spent
writing program text whose sole purpose is to detect erroneous conditions. This fact
is reflected in many modern programming languages, in the form of features that
are intended to detect erroneous uses of the language, and to report such errors or
refer them to parts of the program that can deal with them. In Java, this reporting
device is called throwing an exception.

1.15.1 Built-in Exceptions

There are any number of things that one’s program is Not Supposed to Do. For
example, the following is wrong:

class Bad {

static void blowUp () {

String s = null;

if (s.equals ("")) // (??)

System.out.println ("Oops!");

}

public static void main (String[] args) {

blowUp ();

}

}

The problem is that you have tried to call the equals method (an instance method)
on a “non-instance”—the null pointer doesn’t point at anything. Java responds by
throwing an exception when the condition at (??) is evaluated. Assuming you are
not expecting it, what probably happens is that your entire program grinds to a
halt with a message such as this:

Exception in thread "main" java.lang.NullPointerException

at Bad.blowUp(Bad.java:4)

at Bad.main(Bad.java:9)

which tells us where the error occurred (in the method Bad.blowUp in file Bad.java
at line 4) and how we got to that point (we were called from Bad.main at line 9
of the same file). This message (called a back trace or stack trace) also gives us
the exception type: NullPointerException, which is suggestively named to tell us
what we did wrong.

You’ll get any number of similar messages for other programming errors, such
as attempting to use an array index that is out of bounds, or attempting to do an
integer division by 0.

1.15.2 What Exactly is an Exception?

It is typical in object-oriented programming that nouns used informally to describe
the important concepts or entities in one’s program are turned into classes of object.
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Accordingly, “exception” in Java is actually a class of object known as Throwable
(full name java.lang.Throwable, see §1.14), which has numerous subtypes that
extend it, each one representing a particular kind of exceptional condition. These
exceptions are organized into three broad categories under three of the subtypes:
Error intended for calamitous program-stopping problems such as running out
of memory; RuntimeException for exceptions caused by built-in operations (e.g.,
NullPointerException) or other programmer errors; and Exception for conditions
that are not necessarily programmer errors (for example, that may be caused by
I/O errors or other conditions that arise outside the program).

1.15.3 Throwing Exceptions Explicitly

The throw statement throws an exception. Here’s a simple extension to one of our
previous examples:

/** True iff X is divisible by any positive number >=K and < X,

* given K > 1. */

private static boolean isDivisible (int x, int k) {

if (k <= 1)

throw new IllegalArgumentException ();

...

}

IllegalArgumentException is conveniently supplied as part of the Java library to
allow one to signal, well, illegal arguments. As you can see, the throw command
takes a single operand, a pointer to some kind of Throwable object, which in this
case (as is usually done, in fact) we create on the spot with new.

1.15.4 Catching Exceptions

Sometimes, you expect to receive an exception—for example many input/output
operations carry the possibility of an externally caused error. Robust programs are
prepared for such events. Java provides a way to say “I know that exceptions of type
X can occur during the execution of statements S. If one does, perform statements
E.” For example, to starting read a file Java, one often does something like this:

Reader openFile (String fileName) {

try {

return new FileReader (fileName);

} catch (FileNotFoundException e) {

System.err.println ("Could not open file " + fileName);

return null;

}

}

to indicate that the program should print an error message if the desired file cannot
be found.
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Chapter 2

Describing a Programming
Language

A programming language is a notation for describing computations or processes. The
term “language” here is technically correct, but a little misleading. A programming
language is enormously simpler than any human (or natural) language, for the
simple reason that for it to be useful, somebody has to write a program that converts
programs written in that language into something that runs on a computer. The
more complex the language, the harder this task. So, programming “languages”
are sufficiently simple that, in contrast to English, one can actually write down
complete and precise descriptions of them (at least in principle).

2.1 Dynamic and Static Properties

Over the years, we’ve developed standard ways to describe programming languages,
using a combination of formal notations for some parts and semi-formal prose de-
scriptions for other parts. A typical language description consists of a core—the
general rules that determine what the legal (or well-formed) programs are and what
they do—plus libraries of definitions for standard, useful program components. The
description of the core, in turn, typically divides into static and dynamic properties.

Static properties. In computer science, we use the term static in several senses.
A static language property is purely a property of the text of a program, independent
of any particular set of data that might be input to that program. Together, the
static properties determine which programs are well-formed; we only bother to define
the effects of well-formed programs. Traditionally, we divide static properties into
lexical structure, (context-free) syntax, and static semantics.

• Lexical Structure refers to the alphabet from which a program may be formed
and to the smallest “words” that it is convenient to define (which are called
tokens, terminals, or lexemes.) I put “word” in quotes because tokens can
be far more varied than what we usually call words. Thus, numerals, identi-
fiers, punctuation marks, and quoted strings are usually identified as tokens.
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Rules about what comments look like, where spaces are needed, and what
significance ends of lines have are also considered lexical concerns.

• Context-free Syntax (or grammar) refers roughly to how tokens may be put
together, ignoring their meanings. We call a “sentence” such as “The a;
walk bird” syntactically incorrect or ungrammatical. On the other hand,
the sentence “Colorless green ideas sleep furiously” is grammatical, although
meaningless1.

• Static Semantics refers to other rules that determine the meaningfulness of a
program (“semantics” means “meaning”). For example, the rule in Java that
all identifiers used in a program must have a definition is a static semantic
rule.

The boundaries between these three may seem unclear, and with good reason: they
are rather arbitrary. We distinguish them simply because there happen to be con-
venient notations for describing lexical structure and context-free syntax. There is
considerable overlap between the categories, and sometimes it is a matter of taste
which notation one uses for a particular part of a programming language’s descrip-
tion.

Dynamic Properties. The dynamic semantics of a program refers to its meaning
as a computation—what it does when it is executed (assuming, of course, that the
rules governing static properties of the programming language tell us that it is well-
formed). For example, the fact that x+y fetches the current values of variables
x and y and yields their sum is part of the dynamic semantics of that expression.
In general, the term dynamic in the context of programming languages refers to
properties that change (or are only determined) during the execution of a program.
For example, the fact that the expression x>y yields a boolean (true/false) value is
a static property of the expression, while the actual value of the expression during
a particular evaluation is a dynamic property. As usual, the boundaries between
static and dynamic can be unclear. For example, the evaluation of 3>4 follows
the same rules for ‘>’ as does the evaluation of x>y, but its value is always the
same (false). Should we call the value of 3>4 a static or dynamic property? We’ll
generally follow the sensible course of simply ignoring such questions.

Libraries. In one sense, a program consists of a set of definitions, all building on
one another, one of which may be identified as the “main program.” There have to
be some primitive definitions with which to start. The core defines some of these
primitive definitions, and others come from libraries of definitions. Typically, there
will be set of libraries—referred to as the standard (runtime) library or sometimes
as the standard prologue—that “comes with” the programming language, and is
present in every implementation. One could consider it part of the core, except
that it is typically described as a set of declarations of the sort that any program
could contain.

1This sentence is a famous example due to Noam Chomsky.
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2.2 Describing Lexical Structure and Syntax

The original description of the Algol 60 language2 is the model on which many other
“official” descriptions of programming languages have been based. It introduced a
novel notation (adapted, really, from linguistics) for describing the (context-free)
syntax of a language that came to be known as Backus-Naur Form or Backus Normal
Form after its inventors (the usual abbreviation, BNF, works for both)3. In this
book, we’ll use a somewhat extended version of BNF notation.

The basic idea is simple. A BNF description is a sequence of definitions of what
are called syntactic variables, or nonterminals. Each such variable stands for a set
of possible phrases. One distinguished variable (the start symbol) stands for the set
of all grammatical phrases in the language we are trying to describe. For example4:

Sentence: NounPhrase VerbPhrase
NounPhrase: Adjective NounPhrase
NounPhrase: Adjective PluralNoun
VerbPhrase: PluralVerb Adverbopt
Adjective: laughing
Adjective: little
SingularNoun: boys
SingularNoun: girls
SingularVerb: ran
Adverb: quickly

Read the first definition, for example as “A Sentence may be formed from a Noun-
Phrase followed by a VerbPhrase.” We read ‘:’ as “may be” as opposed to “is,”
because as you can see, there can be several ways to form certain kinds of phrase.
The second definition illustrates recursion: a NounPhrase may be formed from an
Adjective followed by a (smaller) NounPhrase. The recursion stops when we use the
second definition of NounPhrase. The definition of VerbPhrase illustrates a useful
piece of notation: the subscript ‘opt’ to indicate an optional part of the definition.
Equivalently, we could have written

VerbPhrase: PluralVerb Adverb
VerbPhrase: PluralVerb

Each of the terms that does not appear to the left of a ‘:’ is a terminal symbol.
Our convention will be that non-italicized terminals “stand for themselves”—thus,
“laughing little boys ran” is a phrase generated by this grammar. As you can see,
we don’t mention lexical details such as blanks when giving grammar rules; we’ll

2P. Nauer, ed., “Report on the Algorithmic Language Algol 60,” Comm ACM, 6(1), 1963, pp.
1–17.

3In notations where the same thing can be written in many different ways, a normal form for
some expression is supposed to be a particular choice among these different ways that is somehow
unique. For example, the expressions x− 3, x+(−3), −3+x, and 1 ·x− 5+2 all refer to the same
value for any x. A normal form might be “a · x + b, where a and b are constants.” There is only
one way to write the expression that way: 1 · x+(−3). BNF does not have this property, so of the
two names, I prefer Backus-Naur Form.

4This example is adapted from Hopcroft and Ullman, Formal Languages and Their Relation to

Automata, Addison-Wesley, 1969.
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deal with those details separately.
There are several pieces of notational trickery we’ll use to shorten definitions

a bit. Multiple definitions of the same nonterminal may be collected together and
written either like this:

NounPhrase: Adjective NounPhrase | Adjective PluralNoun

(that is, read ‘|’ as “or”). With longer definitions, we’ll usually use the following
style:

NounPhrase:
Adjective NounPhrase
Adjective PluralNoun

The effect of our definition of NounPhrase is to define it to be a sequence of one
or more Adjectives followed by a PluralNoun. We’ll sometimes use a traditional
shorthand for this and write its definition as simply

NounPhrase: Adjective+ PluralNoun

The raised ‘+’ means “one or more.” Similarly, there is a related notation that
we might use to define another kind of NounPhrase in which the Adjectives are
optional:

SimpleNounPhrase: Adjective∗ PluralNoun

The asterisk here (called the Kleene star) means “zero or more.”
Two other common cases are the “list of one or more Xs separated by Y s”

and the “list of one or more Xs separated by Y s,” which one can write as in these
examples:

ExpressionList: Expression | ExpressionList , Expression
ParameterList: ExpressionListopt

Rather than defining new nonterminals, however, we’ll allow a shorthand that re-
places ExpressionList and ParameterList with

Expression+,
Expression∗,

respectively.

Continuing lines. Sometimes a definition gets too long for a line. Our convention
here is to indent continuation lines to indicate that they are not alternatives. For
example, this is one continued alternative, not two:

BasicClassDeclaration:
class SimpleName Extendsopt Implementsopt

{ ClassBodyDeclaration∗ }
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Lexical Basics

3.1 Layout: Whitespace and Comments

Like many modern languages, the text of Java programs is written in free format,
meaning that extra whitespace—a general term for blanks, tab characters, and ends-
of-line—is ignored. The following four alternative ways of writing x=x*(y+7),
for example, are all legal and equivalent (although I’d say that the last three are
distinctly lacking in aesthetic merit):

x = x * (y+7); | x = x | x= x* (y+ 7); |x=x*(y+7);

| * ( y + 7 ) | |

| ; | |

Whitespace is needed whenever an identifier, keyword, or numeral is immediately
followed by another identifier, keyword, or numeral—you must write “int x” and
not “intx.”

A comment is a piece of text intended mostly for the (human) programmer,
adding nothing to the meaning of a program. In effect, a comment is just a kind of
whitespace. In Java, there are two kinds of comment, illustrated here:

int x; // This kind starts with // and continues to the end

// of the line.

int y; /* This kind starts with /* and continues for any

* number of lines, up to the next */

There is a special form of the second kind of comment that, while still not
affecting the meaning of programs, has significance to certain other tools. It is
called a documentation comment, defined as any comment that starts with ‘/**’.
You’ll see plenty of examples of its use in pages to come.
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Chapter 4

Values, Types, and Containers

A programming language is a notation for describing the manipulation of some set
of conceptual entities: numbers, strings, variables, and functions, among others.
A description of this set of entities—of what we call the semantic domain of the
language—is therefore central to the description of a programming language. To
experienced programmers, the notation itself—the syntax of the language—is largely
a convenient veneer; the semantic domain is what they are really talking about.
They think “behind the syntax” to the effects of their programs on the denizens
of the semantic domains, or as the Cornell computer scientist David Gries puts it,
they program into a programming language rather than in it.

To set the stage for what is to come, this chapter is devoted to developing a
model for Java’s semantic domain, one that is actually applicable to a large range
of programming languages. Our model consists of the following components:

Values are “what data are made of.” They include, among other things, integers,
characters, booleans (true and false), and pointers. Values, as I use the term,
are immutable; they never change.

Containers contain values and other containers. Their contents (or state) can
vary over time as a result of the execution of a program. Among other things,
I use the term to include what are elsewhere called objects. Containers may
be simple, meaning that they contain a single value, or structured, meaning
that they contain other containers, which are identified by names or indices.
A container is named if there is some label or identifier a program can use
to refer to it; otherwise it is anonymous. In Java, for example, local vari-
ables, parameters, and fields are named, while objects created by new are
anonymous.

Types are, in effect, tags that are stuck on values and containers like Post-ittm

notes. Every value has such a type, and in Java, so does every container.
Types on containers determine the types of values they may contain.

Environments are special containers used by the programming language for its
local and global named variables.
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4.1 Values and Containers

One of the first things you’ll find in an official specification of a programming lan-
guage is a description of the primitive values supported by that language. In Java,
for example, you’ll find seven kinds of number (types byte, char, short, int, long,
float, and double), true/false values (type boolean), and pointers. In C and
C++, you will also find functions (there are functions in Java, too, but the lan-
guage doesn’t treat them as it does other values), and in Scheme, you will find
rational numbers and symbols.

The common features of all values in our model are that they have types (see
§4.2) and they are immutable; that is, they are changeless quantities. We may
loosely speak of “changing the value of x” when we do an assignment such as
‘x = 42’ (or ‘(set! x 42)’) but under our model what really happens here is that
x denotes a container, and these assignments remove the previous value from the
container and deposit a new one. At first, this may seem to be a confusing, pedantic
distinction, but you should come to see its importance, especially when dealing with
pointers.

4.1.1 Containers and Names

A container is something that can contain values and other containers. Any con-
tainer may either be labeled (or named)—that is, have some kind of name or label
attached to it—or anonymous. A container may be simple or structured. A simple
container, represented in my diagrams as a plain rectangular box, contains a single
value. A structured container contains other containers, each with some kind of
label; it is represented in diagrams by nested boxes, with various abbreviations.
The full diagrammatic form of a structured container consists of a large container
box containing zero or more smaller containers1, each with a label or name, as in
Figure 4.1a. Figures 4.1b–e show various alternative depictions that I’ll also use.
The inner containers are known as components, elements (chiefly in arrays), fields,
or members.

An array is a kind of container in which the labels on the elements are them-
selves values in the programming language—typically integers or tuples of integers.
Figure 4.2 shows various alternative depictions of a sample array whose elements
are labeled by integers and whose elements contain numbers.

4.1.2 Pointers

A pointer (also known as a reference2) is a value that designates a container. When I
draw diagrams of data structures, I will use rectangular boxes to represent containers

1The case of a structured container with no containers inside it is a bit unusual, I admit, but it
does occur.

2For some reason, numerous Java enthusiasts are under the impression that there is some well-
defined distinction between “references” and “pointers” and actually attempt to write helpful expla-
nations for newcomers in which they assume that sentences like “Java has references, not pointers”
actually convey some useful meaning. They don’t. The terms are synonyms.
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Figure 4.1: A structured container, depicted in several different ways. Diagrams
(d) and (e) assume that the labels are known from context.
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Figure 4.2: Various depictions of one-dimensional array objects. The full diagram,
(a), is included for completeness; it is generally not used for arrays. The diagrams
without indices, (c) and (f), assume that the indices are known from context or are
unimportant.
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X:

(a) All pointers here are equal.

(b) Null pointers.

Figure 4.3: Diagrammatic representations of pointers.

and arrows to represent pointers. Two pointer values are the same if they point to
the same container. For example, all of the arrows in Figure 4.3a represent equal
pointer values. As shown there, we indicate that a container contains a certain
pointer value by drawing the pointer’s tail inside the container. The operation
of following a pointer value to the container at its head (i.e., its point) in order
to extract or store a value is called dereferencing the pointer, and the pointed-to
container is the referent of the pointer.

Certain pointer values are known as null pointers, and point at nothing. In
diagrams, I will represent them with the electrical symbol for ground, or use a
box with a diagonal line through it to indicate a container whose value is a null
pointer. Figure 4.3b illustrates these conventions with a “free-floating” null pointer
value and two containers with a null pointer value. Null pointers have no referents;
dereferencing null pointers is undefined, and generally erroneous.

Value or Object? Sometimes, it is not entirely clear how best to apply the
model to a certain programming language. For example, we model a pair in Scheme
as an object containing two components (car and cdr). The components of the
pair have values, but does the pair as a whole have a value? Likewise, can we
talk about the value in the arrays in Figure 4.2, or only about the values in the
individual elements? The answer is a firm “that depends.” We are free to say that
the container in Figure 4.2a has the value <2.7, 0.18, 2.8>, and that assigning,
say, 0 to the first element of the array replaces its entire contents with the value
<0, 0.18, 2.8>. In a programming language with a lot of functions that deal with
entire arrays, this would be useful. To describe Java, however, we don’t happen to
need the concept of “the value of an array object.”

4.2 Types

The term “type” has numerous meanings. One may say that a type is a set of values
(e.g., “the type int is the set of all values between −231 and 231 − 1, inclusive.”).
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Or we may say that a type is a programming language construct that defines a set
of values and the operations on them. For the purposes of this model, however,
I’m just going to assume that a type is a sort of tag that is attached to values
and (possibly) containers. Every value has a unique type. This model does not
necessarily reflect reality directly. For example, in typical Java implementations,
the value representing the character ’A’ is indistinguishable from the integer value
65 of type short. These implementations actually use other means to distinguish
the two than putting some kind of marker on the values. For us programmers,
however, this is usually an invisible detail.

Any given programming language provides some particular set of these type tags.
Most provide a way for the programmer to introduce new ones. Few programming
languages, however, provide a direct way to look at the tag on a value (for various
reasons, among them the fact that it might not really be there!).

4.2.1 Static vs. dynamic types

When containers have tags (they don’t have to; in Scheme, for example, they gener-
ally don’t), these tags generally determine the possible values that may be contained.
In the simplest case, a container labeled with type T may only contain values of
type T . In Java (and C, C++, FORTRAN, and numerous other languages), this
is the case for all the numeric types. If you want to store a value of type short
into a container of type int, then you must first coerce (a technical term, meaning
convert) the short into an int. As it happens, that particular operation is often
merely notional; it doesn’t require any machine instructions to perform, but we can
still talk that way.

In more complex cases, the type tag on a container may indicate that the values
it contains can have one of a whole set of possible types. In this case, we say that the
allowable types on values are subtypes of the container’s type. In Java, for example,
if the definition of class Q contains the clause “extends P” or “implements P,”
then Q is a subtype of P; a container tagged to contain pointers to objects of type
P may contain pointers to objects of type Q. The subtype relation is transitive: any
subtype of Q is also a subtype of P. As a special case, any type is a subtype of itself;
we say that one type is a proper subtype of another to mean that it is an unequal
subtype.

If type C is a subtype of type P , and V is a value whose type tag is C, we say
that “V is a P” or “V is an instance of P .” Unfortunately, this terminology makes
it a little difficult to say that V “really is a” P and not one of its proper subtypes,
so in this class I’ll say that “the type of V is exactly P” when I want to say that.

In Java, all objects created by new are anonymous. If P is a class, then the
declaration

P x;

does not mean that “x contains objects of type P,” but rather that “x contains
pointers to objects of type P (or null).” If Q is a subtype of P, furthermore, then the
type “pointer to Q” is a subtype of “pointer to P.” However, because it is extremely
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burdensome always to be saying “x contains a pointer to P,” the universal practice
is just to say “x is a P.” After this section, I’ll do that, too, but until it becomes
automatic, I suggest that you consciously translate all such shorthand phrases into
their full equivalents.

All this discussion should make it clear that the tag on a value can differ from the
tag on a container that holds that value. This possibility causes endless confusion,
because of the rather loose terminology that arose in the days before object-oriented
programming (it is object-oriented programming that gives rise to cases where the
confusion occurs). For example, the following Java program fragment introduces a
variable (container) called x; says that the container’s type is (pointer to) P; and
directs that a value of type (pointer to) Q be placed in x:

P x = new Q ();

Programmers are accustomed to speak of “the type of x.” But what does this mean:
the type of the value contained in x (i.e., pointer to Q), or the type of the container
itself (i.e., pointer to P)?

We will use the phrase “the static type of x” to mean the type of the container
(in the example above, this type is “pointer to P”), and the phrase “the dynamic type
of x” to mean the type of the value contained in x (in the example above, “pointer
to Q”). This is an extremely important distinction! Object-oriented programming
in Java or C++ will be a source of unending confusion to you until you understand
it completely.

4.2.2 Type denotations in Java

A type denotation is a piece of syntax that names a type.

Syntax.

Type: PrimitiveType | ReferenceType
PrimitiveType:

boolean
byte | char | short | int | long
float | double

ReferenceType:
ClassOrInterfaceType | ArrayType

ClassOrInterfaceType: Name TypeArgumentsopt
ClassType: Name TypeArgumentsopt
InterfaceType: Name TypeArgumentsopt
ArrayType: Type Dim
Dim: [ ]

As the names suggest, the Name in a ClassOrInterfaceType must be the name
of a class or interface, the name of a class in a ClassType, and of an interface
in an InterfaceType. We’ve already seen examples of defining simple classes and
interfaces. See §10 for the significance of TypeArguments.

Cross references: TypeArguments 234.
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4.3 Environments

In order to direct a computer to manipulate something, you have to be able to
mention that thing in your program. Programming languages therefore provide
various ways to denote values (literal constants, such as 42 or ’Q’) and to denote
(or name) containers. Within our model, we can imagine that at any given time,
there is a set of containers, which I will call the current environment, that allows
the program to get at anything it is supposed to be able to reach. In Java (and in
most other languages as well) the current environment cannot itself be named or
manipulated directly by a program; it’s just used whenever the program mentions
the name of something that is supposed to be a container. The containers in this
set are called frames. The named component containers inside them are what we
usually call local variables, parameters, and so forth. You have already seen this
concept in CS 61A, and might want to review the material from that course.

When we have to talk about environments, I’ll just use the same container
notation used in previous sections. Occasionally, I will make use of “free-floating”
labeled containers, such as

42X:

to indicate that X is a variable, but that it is not important to the discussion what
frame it sits in.

4.4 Applying the model to Java

As modern languages in the Algol family go, Java is fairly simple3. Nevertheless,
there is quite a bit to explain. Here is a summary of how Java looks, as described
in the terminology of our model. We’ll get into the details of what it all means in
a later note.

• All simple containers contain either numeric values, booleans, or pointers
(known as references in Java). (There are also functions, but the manipulation
of function-valued containers is highly restricted, and not entirely accessible
to programmers. We say no more about them here.)

• All simple containers are named and only simple containers are named. The
names are either identifiers (for variables, parameters, or fields) or non-negative
integers (for array elements).

• All simple containers have well-defined initial values: 0 for numerics, false for
booleans, and null for pointers.

• The referents of pointers are always anonymous structured containers (called
objects in Java).

3Algol 60 (ALGOrithmic Language) was the first widely used language with the kind free-format
syntax familiar to C, C++, and Java users. It has, in fact, been called “a marked improvement on
its successors.”
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• Aside from environments, objects are created by means of the new expression,
which returns a pointer (initially the only one) to a new object.

• Each container has a static type, restricting the values it may contain. A
container’s type may be primitive—which in Java terminology means that
it may one of the numeric types or boolean—or it may be a reference type,
meaning that it contains pointers to objects (including arrays). If a container’s
static type is primitive, it is the same as its dynamic type (that is, the type
of the container equals the type of the value). If a container has a reference
type, then its dynamic type is a subtype of the container’s type.

• Named containers comprise local variables, parameters, instance variables,
and class variables. Every function call creates a subprogram frame, (or pro-
cedure frame, or call frame), which contains parameters and local variables.
The new operator creates class objects and array objects, which contain in-
stance variables (also called fields in the case of class objects and elements in
the case of arrays). The type of a class object is called, appropriately enough,
a class. Each class has associated with it a frame that (for lack of a standard
term) I will call a class frame, which contains the class variables (also called
static variables) of the class.



Chapter 5

Declarations

Declarations introduce names into programs. Java has three kinds of declarations
that introduce containers—field declarations (which introduce instance variables
and class variables, §5.4.4), local variable declarations (§5.2), and formal parameter
declarations (§5.8)—plus declarations for classes (§5.4), interfaces (§5.5), and var-
ious kinds of functions—methods (§5.8), constructors (§5.9), and static initializers
(§5.10). With the exception of static initializers (which have an implicit name) all
declarations associate Identifiers with some declared entity

Syntax.

Identifier: Letter LetterOrDigit∗

Letter: Unicode letter or _
LetterOrDigit: Letter | Unicode digit

The dollar sign ($) also counts as a letter, but you should not use it in any program
you write; it is intended to be used only in programs that are written by other
programs. Upper-case letters are considered to be different from their lower-case
counterparts, so the identifiers x and X are considered different. The Unicode letters
and digits include not just the ASCII Latin letters and arabic digits, but also all
letters and digits from other alphabets that are included in the Unicode standard.
Of course, it is silly to use these other characters unless your program editor happens
to display them properly.

Certain strings of letters are reserved words and may not be used as Identifiers.
Here is a complete list1:

abstract default goto null synchronized

boolean do if this throw

break double implements package throws

byte else import private transient

case extends instanceof public true

1The official Java specification divides this list into keywords, which each have unique gram-
matical purposes, and the literals true, false, null, which are like pre-defined identifiers. Two
keywords—goto and const—are not actually used anywhere in Java at the moment, but are for-
bidden, presumably, to keep users out of trouble.

79
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catch false int return try

char final interface short void

class finally long static volatile

const float native super while

continue for new switch

5.1 Scope and the Meaning of Names

All declarations have a scope: a range of program text in which they are in effect.
First, the scope of a declaration has an immediate scope that is dictated by block
structure. Second, the scope of individual declarations may be extended to arbitrary
points in a program by selection and field access. Finally, the scope of declarations
defined in classes and interfaces may be extended by inheritance. We’ll deal with
field access in §6.6.2 and with inheritance in §5.4.2. After looking at block structure
and selection, we put it all together to see how uses of names get their meanings in
general.

5.1.1 Block structure

Within a single source file, most declarations in Java obey block-structured scope
rules. The text can be thought of as being divided into nested declarative regions,
and the scope of a declaration stretches to the end of that region starting either
from the declaration itself or from the start of the declarative region.

To see what this all means, take a look at the code skeleton in Figure 5.1. Each
declaration’s scope (on the left) is contained inside some declarative region (on
the right), namely the innermost (smallest) region that contains the declaration.
Declarations of classes, fields, functions, parameters, and statement labels have
scopes that fill their entire declarative region. Declarations of local variables start
at the point of declaration2.

The scopes of the field named x and the local variable named x overlap. In this
case, the innermost (smaller) scope shadows (or hides) the outer one; we sometimes
refer to the situation as a “hole in the scope” of the outer declaration. In general,
whenever the overlap of two declarations creates an ambiguity that can’t be resolved
from context, the one with innermost scope hides the other. Not all declarations
with the same name hide each other, since the contexts in which some uses of
names appear serve to distinguish which of several possible declarations apply. For
example, there is never confusion between a field named f and a function named f

because uses of method names must always be followed by argument lists. Also, two
functions may have the same name and not be confused because they take different
numbers or types of arguments (this is called overloading the function name, and
is discussed further in §5.8.3).

2Yes, you could say that parameters and statement labels follow the same rule as local variable
declarations since they happen to appear at the beginnings of their declarative regions. Take your
pick.
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class A1 {

void f2 (int z3) {

B b4;

print (x8);

int x5 = 2;

Loop10:

for (int i6 = 0; ...) {

print (i6);

}

print (x5);

// print (i) illegal here

for (int i7 = 0; ...) {

print (i7);

}

}

int x8;

}

class B9 {

...

}

ab

c

d

e

f

1;9 8 2

3

4

5

6;10

7

Figure 5.1: Block-structured scope rules in Java. The lettered brackets at the right
show the declarative regions, and the numbered brackets at the left show the scopes
of declarations. Region (a) is the entire file (file scope); (b) and (c) are class bodies;
(d) is the body and parameters of function f; and (e) and (f) are the for loop bodies.
The subscripts on identifiers link identifiers that are subject to the same declaration,
and also refer to the scopes on the left. The cross-hatched portion of the scope of
declaration #8 indicates where that declaration is shadowed by declaration #5 for
the same identifier.
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5.1.2 Selection

In addition to the block-structured scope rules illustrated in Figure 5.1, the scope
of a declaration may extend to nearly any point in a program (even into another
file) as the result of field access (discussed in §6.6.2) or of selection in a qualified
name:

Syntax.

Name: Qualifieropt SimpleName
Qualifier: Name .

SimpleName: Identifier

In general, the syntax A.I in Java, where I is an identifier, means “the entity named
I that is defined in the entity named or referenced by A.” When A is the Name in a
Qualifier , as here, it may denote a class or interface, as in java.lang.System.out,
where the qualifier java.lang.System denotes one of the standard library classes.
It may also denote a package: both java and java.lang denote packages. (The
other case, where it denotes a value, I am calling a field access (§6.6.2), rather than
a qualified name.) The scope of declarations in the type or package denoted by the
Qualifier is, in effect, extended to the point just after the dot (I suppose one might
call it a “wormhole in scope.”)

Names, again, denote declarations of things. In many contexts, only names of
particular kinds of things are allowed. We’ll denote these by using nonterminals
with suggestive names:

TypeName: Name TypeArgumentsopt
PackageName: Name
MemberName: Name TypeArgumentsopt
StaticMemberName: Name TypeArgumentsopt
MethodName: Name
ExpressionName: Name

which you are to read as a name that denotes a type, package, member of a type,
static member of a type, method, or variable, respectively. We’ll discuss TypeArgu-
ments more in Chapter 10.

There will be times when this (context-free) syntax alone is ambiguous. For now,
For example, in x.z = 3, z must be an ExpressionName, but x could be either a
TypeName or ExpressionName. Fortunately, the compiler has other ways to figure
this out.

5.1.3 Packages and Imports

Besides the block structure that is evident in a single source file, Java imposes a kind
of global block structure as well that defines how some names are visible in many
source files. All types in Java are themselves contained in packages. A package
is nothing more than a set of named types (classes and interfaces) and named

Cross references: Identifier 79.
Cross references: TypeArguments 234.
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(sub)packages. No two entities in a package may have the same name. There is an
outer-level anonymous package, which may be thought of as the root of a hierarchy
of types and packages.

Syntax.

PackageClause: Annotation∗ package PackageName ;

We’ll discuss Annotations separately in §5.13.
Packages are not declared explicitly. Instead, each source file defines which pack-

age its types are part of, using a PackageClause (see also §5.12 for its placement).
Types from source files that don’t specify a package go into the anonymous pack-
age. The types and packages in this anonymous package are what I’ll call outer-level
types and packages.

The precise initial contents of the anonymous package and its subpackages de-
pends on the implementation of Java you are using. Typically, though, there are
two ways in which such implementations represent the package hierarchy. In one,
files represent classes and directories represent packages. One gives the compiler
(or, during execution, the run-time system) a set of directories (a class path) whose
contents represent the anonymous top-level directory. The files in that directory
are the compiled versions of classes in the anonymous package or their source files;
the subdirectories are the subpackages of the anonymous package. The definition is
recursive. The other way to represent a class hierarchy is as a class archive—some
kind of file that contains a set of classes, indexed by their names and packages (Sun
calls these jar files: Java archives).

Certain packages form the large Java standard library of classes and interfaces.
Covering the entire multitude is far beyond the scope of this book, but we will look at
some of them in later chapters. Chief among these is the package java.lang (that is,
“the package lang defined in the outer-level package java”). This package contains
the types String (§9.2) and Object, plus all the exception types thrown implicitly
by certain instructions in the language (see §8). In other words, java.lang includes
all the classes needed to define the core of Java.

Subject to certain access rules (see §5.11), one can refer to any outer-level type
or package by its name (a simple identifier) and to any other type or subpackage by
selection (§5.1.2). Thus, you can write

java.lang.String msg = "Hello, world!";

java.io.Reader R = new java.io.FileReader (name);

This is entirely appropriate for types that are mentioned infrequently, but the reader
of a program only needs to be reminded a few times where to find a particular type
before the constant qualification becomes burdensome, so there are shortcuts:

• As we’ve seen, one can refer to any type defined in a particular source file
from anywhere else in that file using just its simple name.

Cross references: Annotation 116.
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• One can refer to any type defined in a particular package from anywhere else
in that package without qualification (that is, using just its simple name).

• Finally, one can refer to members of a package of class by their simple names
with the help of import clauses.

Import clauses go at the beginning of a source file, just after any package dec-
laration:

ImportClause: TypeImport | PackageImport | StaticImport
TypeImport: import PackageName . TypeName ;

PackageImport: import PackageName . * ;

StaticImport:
import static PackageName . StaticMemberName ;

import static PackageName . TypeName . * ;

These clauses simply allow you to refer to certain things by their simple names,
without having to use selection. That’s all they do: you don’t need to import some-
thing in order to use it and importing does not give you extra access to anything.
For example, the following four versions of nextRoot are equivalent:

// Version 1:

class Sqrt {

/** The square root of the next number on INP. */

double nextRoot (java.util.Scanner inp)

return java.lang.Math.sqrt (inp.nextDouble ());

}

// Version 2:

class Sqrt {

/** The square root of the next number on INP. */

double nextRoot (java.util.Scanner inp)

return Math.sqrt (inp.nextDouble ());

}

// Version 3:

import java.util.Scanner;

import static java.lang.Math.sqrt;

class Sqrt {

/** The square root of the next number on INP. */

double nextRoot (Scanner inp)

Cross references: Name 82.
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return sqrt (inp.nextDouble ());

}

// Version 4:

import java.util.*;

import static java.lang.Math.*;

class Sqrt {

/** The square root of the next number on INP. */

double nextRoot (Scanner inp)

return sqrt (inp.nextDouble ());

}

In Version 1, I wrote out the full names of class Scanner and the static method
sqrt. In Version 3, I used two import clauses to abbreviate the names Scanner
and sqrt. In Version 4, I used .* to import all the public names3 in the package
java.util, and all the public static members in the class java.lang.Math. As
Version 2 illustrates, finally, that every program implicitly starts with the Pack-
ageImport clause import java.lang.*.

Import clauses do not import packages. In fact, you can never refer to subpack-
ages by their simple names, except for outer-level packages.

These rules as stated lead to certain ambiguities: for example, what if a type is
introduced by a TypeImport and has the same name as a type in the same package?
In general, names defined in the same source file take precedence over names defined
by the non-asterisked import clauses, which take precedence over type names from
the same package, which take precedence over the asterisked import clauses.

5.2 Local Variables

A local variable is a simple container whose scope is delimited by some block and
which goes out of existence when execution of its block is finished.

Syntax.

LocalDeclarationStatement:
finalopt Type InitDeclarator+, ;

InitDeclarator: Declarator VarInitopt
Declarator: SimpleName
VarInit:

= Expression
= ArrayInitializer

3See §5.11 for the meaning of “public.”
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The scope of a local declaration starts at the point of declaration and goes to the
end of the innermost enclosing declarative region (usually to the curly brace that
ends whatever block it is in). No SimpleName used in a Declarator may duplicate
that of any other local declaration or parameter that is in scope, even one in an
enclosing block. Thus, local declarations may not hide each other and may not hide
parameter declarations. Local declarations may hide field declarations (§5.4.4) and
(where there is ambiguity) type declarations4. Statement labels (§7.5) and method
declarations never create ambiguities with local variables, so duplication of names
here is perfectly legal (even if usually unwise).

The effect of the declaration is to create new containers, one for each Declarator ,
and to initialize their contents to the value given in their respective VarInits, where
present. The Type part of a declaration gives the static type of the new local
variables named by the Declarators5.

A VarInit provides an initial value for a local variable at the point of declara-
tion. The Expression is evaluated and its value assigned, just as for an ordinary
assignment (see §6.7). The ArrayInitializer option—as in

int[] x = { 1, 2, 3 };

—is a shorthand. The declaration above, for example, is equivalent to

int[] x = new int[] { 1, 2, 3 };

(see §6.6.4) and allows you to create and initialize a new array in one statement.

A local variable must be assigned a value before its value is used, and it must
be apparent to the compiler that this is so. See §6.11 for what “apparent to the
compiler” officially means.

The inclusion of the modifier final in a local-variable declaration indicates that
the variable will not be changed once it is explicitly initialized (either by a VarInit
or later assignment). The compiler will complain if it cannot be sure that there will
be only one assignment to such a variable.

Stylistic matters. I suggest that you use initialized variables only in the ForInit
clauses (§7.4) in for loops and for final local variables or variables you do not intend
to change once set. This is a matter of taste, but to my eye, inclusion of a value in
a declaration such as

int N = 0;

suggests that N is being defined to be 0.

Cross references: Type 76, Expression 119, ArrayInitializer 150, SimpleName 82.
4The hiding of type declarations by local variables is one of those really obscure cases that really

shouldn’t come up, since the usual conventions for naming classes and local variables keeps their
names different.

5In fact, there is alternative syntax, held over from C, for local variables that denote arrays.
The declaration int x[] is synonymous with int[] x. As a stylistic matter, however, I ask that
you not use this older form, and so have not included it in the syntax.
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5.3 Type Declarations

The set of Java types is divided into primitive types (int, etc.) and reference
types. The language provides a built-in way to create one kind of reference types:
array types are introduced automatically whenever their types are mentioned. The
programmer can define the other kinds of reference types, class and interface types,
using class and interface declarations.

Syntax

TypeDeclaration: ClassDeclaration | EnumDeclaration | InterfaceDeclaration

5.4 Class Declarations

A class declaration introduces a new type of structured container.

Syntax.

ClassDeclaration: ClassModifier∗ BasicClassDeclaration
BasicClassDeclaration:

class SimpleName TypeParametersopt
Extendsopt Implementsopt

ClassBody
ClassModifier: final | public | abstract | Annotation
Extends: extends ClassType
Implements: implements InterfaceType+,
ClassBody: { ClassBodyDeclaration∗ }

ClassBodyDeclaration:
FieldDeclaration
MethodDeclaration
ConstructorDeclaration
MemberTypeDeclaration
StaticInitializer
InstanceInitializer

(We’ll discuss TypeParameters in Chapter 10.) This syntax defines a kind of tem-
plate for instances of the class (created by the new operator, §6.6.1). Each instance
is a structured container whose subcontainers are the same for all instances of the
class and are given by its field declarations. In addition, the class declaration spec-
ifies a set of functions (called methods) that are applicable to instances of the type,
a set of constructors, which are functions that initialize (set the fields of) new in-
stances of the the type, and static initializers for initializing class variables shared

Cross references: ClassDeclaration 87, InterfaceDeclaration 91, EnumDeclaration 92.
Cross references: Annotation 116, ClassType 76, ConstructorDeclaration 107, FieldDeclaration

90, InterfaceType 76, MemberTypeDeclaration 94, MethodDeclaration 99, StaticInitializer 112, Sim-

pleName 82, TypeParameters 234.



88 CHAPTER 5. DECLARATIONS

by all instances. Finally, one can define classes inside the class; this feature is in-
tended for classes that are needed to implement the outer class but would unduly
clutter up the package if they were written as full-fledged classes.

5.4.1 Kinds of class members

Collectively, the fields, methods, constructors, and member classes defined in a class
are known as its members. There are two kinds of members: static and non-static.
Static members (indicated with the keyword static) are associated with the type
itself; they are one-of-a-kind. Thus, static fields are also called class variables, and
static methods are called class methods. Non-static members (indicated by the
absence of the keyword static) are associated with individual instances of the type.
Thus, non-static fields are also called instance variables and non-static methods are
also called instance methods. To see the difference, consider an accumulator class:

class Accum {

static int total = 0;

int sum = 0;

static void resetTotal () {

total = 0;

// Illegal to mention sum here.

}

int incr (int n) {

sum += n; total += n;

}

}

and the following program:

Accum a1 = new Accum ();

a1.incr (3);

// Now a1.sum, a1.total, and Accum.total = 3.

// Accum.sum is illegal.

Accum a2 = new Accum ();

a2.incr (2);

// Now a1.sum = 3, a2.sum = 2, and

// a1.total, a2.total, and Accum.total = 5.

a1.resetTotal (); // or a2.resetTotal()

// or Accum.resetTotal()

// Now a1.sum = 3, a2.sum = 2, and

// a1.total, a2.total, and Accum.total = 0.

The three variables a1.total, a2.total, and Accum.total are all the same, single
variable; there is only one for the class Accum. The variables a1.sum and a2.sum

are distinct; there is one for every instance created by new Accum(). It is illegal to
refer to Accum.sum because it makes no sense: the sum variable of which instance
of Accum? The non-static member function incr increments the sum variable of a
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particular instance. The static member function resetTotal can touch only the
static variables of its class.

5.4.2 Inheritance

When a class C extends another class P , We say that P is the direct superclass of
C, and C is a direct subclass of P . A class without an extends clause automat-
ically has Object (in package java.lang) as its direct superclass. The set of all
superclasses of C consists of C, P, and all superclasses of P recursively; we use the
term proper superclass if we want to exclude C itself. Similarly for subclasses and
proper subclasses. Thus, only the class Object has no proper superclasses, and
all classes are subclasses of Object.

If P is a superclass of C, we also say that C is a subtype of P . If P is not C
itself, then C is a proper subtype of P .

The main importance of the superclass relationship is that it controls inheri-
tance. The fields of class C consist of all the fields of P (its superclass) plus any
that are explicitly declared in C itself. We say that C inherits the fields of P . Thus,
each instance of C will contain at least the same instance variables as a P , and C
will share P ’s class variables (that is, if P.x is a class variable of P, then C.x will
refer to the same variable)6.

Likewise, C inherits the non-private methods of P . Here, however, there is an
additional, extremely important wrinkle. If a non-static method declaration in C
has the same name and argument types as one that is inherited from P , then we
say that C overrides the definition of that method. See §5.8.4 for the meaning of
this.

The class C also inherits the fields and methods from the interfaces that it
implements, and can override methods from these interfaces; see §5.5.

5.4.3 Class Modifiers

The class modifiers specify certain properties of the definition. The modifiers final
and abstract are mutually exclusive. We’ll discuss Annotations later in §5.13.

A public class may be mentioned directly in compilation units (source files) for
other packages. Non-public classes may not. See §5.11 for a complete discussion of
the public keyword and other access modifiers. The general convention is that a
given compilation unit may contain at most one public class.

A class designated to be final may not be extended. That is, it may not appear
in the extends clause of any other class. In the abstract, there is seldom any
particular reason to do this, closing off forever the possibility of extending a certain
class. However, it does allow some implementations of Java to make some operations
on the class a little faster.

An abstract class may not have instances. That is, it is illegal to execute new

C(...) for any abstract class C. On the other hand, the array allocator new

6If one declares a field in C with the same name as one in P , then C will contain two distinct
fields with the same name. The rules of Java will tell you what this means, but it is very confusing,
so don’t ever do it.
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C[...] is perfectly legal, since it does not create any C’s (see §6.6.4). The idea
behind an abstract class is that it represents a common interface that is shared by
all its subclasses, which extend it to fill in concrete behavior. Accordingly, not all
the methods in an abstract class need to have bodies. A variable’s type may be an
abstract class, even though values stored in that variable cannot point to an object
of exactly that type (since there aren’t any); by the rules of Java, however, that
variable can contain values of the subclasses.

5.4.4 Fields

Syntax.

FieldDeclaration:
FieldModifier∗ Type InitDeclarator+, ;

FieldModifier:
public | protected | private
final
static
volatile | transient
Annotation

Fields are containers (see §4.1.1); that is, they are a form of variable and contain
values. You may either have a single instance of a field for the entire program
(static fields (or class variables)) or one instance of a field for every object of the
class (non-static fields or instance variables), as described in §5.4.1. Class variables
are created and initialized when the class itself is loaded (see §5.10), and instance
variables are created each time the new operator creates a new object. If a field
declaration contains a VarInit (see §5.2), then that provides the initial value for the
field, as described in more detail in §5.9. Otherwise, when the field is created, it
is given an initial value that depends on the type: 0 for numeric types, false for
booleans, and null for reference types.

A final field may be assigned to exactly once, after which further assignments
are illegal (so that the field’s value remains constant). Typically, one initializes
final fields with a VarInit , but the current definition of Java allows you to initialize
them in a constructor, as long as there is only one assignment.

The keywords private, protected, and public control where the programmer
may refer to a field. We discuss these in §5.11.

The volatile keyword indicates that from the point of view of any given thread
(see Chapter 11) the variable can change at any time. You will seldom have to
worry about this, fortunately; see §11.3.3 for more discussion.

The transient keyword is even more obscure. It means that the value of the field
would be meaningless outside this particular execution of this particular program,
so there is generally no point in trying to write it to a file, for example, to be read
back later. No doubt you are burning with curiosity to know when you would ever
use it, but I’m afraid we are going to disappoint you.

Cross references: Annotation 116, InitDeclarator 85, Type 76.
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5.5 Interface Declarations

An interface is similar to an abstract class in that it is impossible to create an object
whose type is an interface type. It differs in that all methods in an interface are
abstract (and must have no bodies), and all fields are static constants.

Syntax.

InterfaceDeclaration: InterfaceModifier∗ BasicInterfaceDeclaration
BasicInterfaceDeclaration:

interface SimpleName TypeParametersopt
SuperInterfacesopt

{ InterfaceBodyDeclaration∗ }

InterfaceModifier: public | abstract | Annotation
SuperInterfaces: extends InterfaceType+,
InterfaceBodyDeclaration:

ConstantDeclaration
MethodSignatureDeclaration
MemberTypeDeclaration

MethodSignatureDeclaration:
InterfaceModifier∗ MethodSignature ;

ConstantDeclaration: ConstantModifier∗ Type InitDeclarator+, ;

ConstantModifier: public | static | final | Annotation

In a ConstantDeclaration, all InitDeclarators must have a VarInit clause (=...).
Since interfaces are always abstract, the abstract modifier is superfluous, and as
a matter of style should not be used. All ConstantDeclarations in an interface
declaration are public, static, and final, so the keywords public, static, and final
are superfluous, and should not be used. Finally, the public and abstract keywords
applied to methods are superfluous (all interface methods are public and abstract)
and should not be used7.

An interface can extend any number of other interfaces, which are called its
direct superinterfaces8. An interface’s complete set of superinterfaces consists
of itself, its direct superinterfaces, and all of their superinterfaces (recursively).
An interface is a subtype of its superinterfaces. As for classes, the significance of
superinterfaces is inheritance: an interface inherits all methods and fields declared
in its superinterfaces. Methods having the same name, argument types, and return
type and defined in two different superinterfaces are considered to be a single method
(this makes sense only because methods in interfaces never have bodies.)

Cross references: Annotation 116, InitDeclarator 85, InterfaceType 76, MemberTypeDeclaration

94 MethodSignature 100, SimpleName 82, TypeParameters 234.
7I know that’s a lot of superfluous syntax that you are never supposed to use; it’s the usual

thing—“historical reasons.”
8WARNING: This terminology is really confusing in one sense. An interface contains, in general,

more members than its super interface. The term makes sense because the set of classes that
implement a superinterface of interface I is a superset of the set of classes that implement I.
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Interfaces exist to be implemented by classes. The implements list in a class
declaration specifies a set of interfaces the class implements (and inherits from).
The class also implements all superinterfaces of these interfaces as well. A class is
a subtype of all interfaces it or one of its superclasses implements.

5.6 Enumerated Types

An enumerated (usually abbreviated enum) class is a type of class whose main
content is a set of distinct named constants of that class. These types are intended
for situations where one wants a type whose purpose is to represent a relatively
small set of values whose main property is simply that they differ from each other.

Syntax.

EnumDeclaration: ClassModifier∗ enum SimpleName
Implementsopt {

EnumConstant∗, EnumBodyDeclarationsopt }
EnumBodyDeclarations: ; ClassBodyDeclaration∗

EnumConstant: SimpleName Formalsopt ClassBodyopt
Enum classes may not be abstract. When nested (see §5.7), they are always static.

Semantics First, let’s consider an example of the simplest case:

package Rainbow;

enum Color {

Red, Yellow, Green, Blue, Violet

}

This defines a class Color and five static final (constant) members that are automat-
ically initialized to be different values of type Color. You can refer to them in the
usual fashion for static members: as Color.Red, etc. However, you will probably
find it easier to include a static import at the beginning of your program:

import static Rainbow.Color.*;

so that you can simply write Red, Blue, etc.

This simple declaration provides you with the usual methods of Object. Since
the values of the enumeration constants (or enumerals, as they are sometimes called)
are all distinct, we have that Red != Blue, and so forth9. Finally, there are few
methods that are peculiar to enumerated types:

Cross references: ClassModifier 87, Implements 87, ClassBody 87, ClassBodyDeclaration 87,
Formals 100

9For some reason, some beginning programmers are tempted to compare values of enum
types in a convoluted fashion. For example, instead of x==Red, one might see x.ordinal() ==

Red.ordinal() or even x.name().equals("Red"). Don’t do that.
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Color.values () is an array containing the values Red through Blue in the order
they are listed.

v.ordinal () where v is a Color, is the position of v in the array Color.values

() (so Red.ordinal () is 0).

v.name () is the declared name (a String) for the Color value v.

Colors.valueOf (s) is the Color value whose enumeral is named s (a String).
Thus, s.equals(Colors.valueOf(s).name()), assuming there is such an
enumeral.

By special dispensation, Java allows you to use enumerals in switch statements:

switch (someColor) {

case Red:

return 751;

case Yellow:

return 587;

case Green:

return 534;

case Blue:

return 473;

case Violet:

return 422;

}

(which might be a way to translate Colors to approximate wavelengths in nanome-
ters).

Most of this so far looks like a simple elaboration of enumerated types in other
languages, such as C, Pascal, or Ada. However, Java goes further, in that enu-
merated types are full-fledged classes, and can contain arbitrary data besides their
names and ordinal positions. The easiest elaboration is the addition of instance vari-
ables and constructors. For example, suppose Colors carry around the wavelengths
of light they denote. Here’s one way to do so:

public enum Color {

Red (780, 722), Yellow (597, 577), Green (577, 492),

Blue (492, 455), Violet (455, 390);

/** A Color roughly corresponding to wavelengths between LONGEST

and SHORTEST nanometers. */

Color (int longest, int shortest) {

this.longest = longest;

this.shortest = shortest;

}
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/** A representive wavelength in nanometers for light of

this Color. */

public int wavelength () {

return (this.longest + this.shortest) / 2;

}

final int longest, shortest;

}

The wavelength method replaces the previous switch statement.

Though it’s uncommon, we can go even further and supply enumerals with class
bodies, which can, as usual override methods of the Color class. The effect is
to extend the class Color with anonymous types, so that the enumerals don’t all
necessarily have the same dynamic types, although their types are all subtypes of
Color.

5.7 Nested Classes and Interfaces

Class and interface declarations may be nested inside other constructs; we call
them nested classes and nested interfaces to distinguish them from top-level classes
and interfaces. Such declarations may be members of classes and interfaces, called
member classes and member interfaces. Nested classes may be defined in blocks, in
the same positions as local variable declarations, in which case they are local classes.
Member classes and interfaces may be declared static, which means essentially that
they are ordinary type declarations that can be named by selection like other static
class members and that have access to private fields of the class that contains them.
Nested classes that are non-static are called inner classes; they also have access to
instance (non-static) variables of their enclosing definition.

5.7.1 Member types

Syntax.

MemberTypeDeclaration:
MemberTypeModifier∗ BasicClassDeclaration
MemberTypeModifier∗ BasicInterfaceDeclaration

MemberTypeModifier:
private | protected | public
static | Annotation

Member interfaces are implicitly static; the use of the static keyword for them is
allowed. At most one access modifier (private, protected, public) is allowed.
Member classes that are defined inside interfaces are implicitly public and static;
again these modifiers are allowed, but unnecessary.

Cross references: Annotation 116, BasicClassDeclaration 87, BasicInterfaceDeclaration 91.
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There are restrictions on the contents of member types. Inner classes may not
declare static initializers (§5.10) or static member types. They may not declare
static fields, unless they are declarations of constants (§6.9).

Semantics. A static member type is essentially the same as a top-level type, with
a fancier name and a little more access.

class Outer {

private static int x;

private int y;

static class Nested {

static int z = x; // OK

// static int r = y; // ILLEGAL

void f (Outer a) {

a.y = 3; // OK

}

}

}

The full name of the nested class here is Outer.Nested. The simple name Nested
is valid only inside the declaration of Outer. The class Nested has access to all the
static members (fields, functions, and other nested classes) of Outer by their simple
names, but it can only access instance variables and other non-static members using
selection or field access, (e.g., a.y in the example above).

An inner member class (non-static nested class) is a much different beast. In-
tuitively, the idea is supposed to be that each instance of the enclosing class has
its own version of the inner class. To show all the mechanisms involved, it’s best
to look at an example. Figure 5.2 (page 96) shows a set of declarations for the
top-level class House and the inner class House.Door, and a diagram of the result
of executing h = Builder.newHouse ("T. C. Mits"). To create an inner class
object, one uses a class allocator (§6.6.1) of the form

OuterObject.new InnerObjectClass(...)

as illustrated in the new expressions in the figure that create Doors. A pointer to
the instance of the outer class (in this case, a House) with which inner instances
(in this case, a couple of Doors) were created is stored in those inner instances,
available as if it were a field named OuterObjectType.this (House.this in the
example from the figure). Thus, instance methods of a Door can access the fields
of the House it was created from. The usual block-structured scope rules apply, so
that, as indicated in a comment, the methods of the inner class can refer to the
fields of the outer class without using House.this.

5.7.2 Local classes

A local class is a class defined in a statement sequence, such as a block.
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h:
occupant:

doors:

House.this:

where:

House.this:

where:

"T. C. Mits"

"North"

"East"

class House {

House (String occupant, int numDoors) {

this.occupant = occupant;

doors = this.new Door[numDoors];

// Just ’doors = new Door[...]’ would also be legal.

}

String occupant;

Door[] doors;

public class Door {

Door (String where) { this.where = where; }

String where;

void enter () {

System.out.println

("Entered house belonging to "

+ House.this.occupant + " via the "

+ this.where + " door.");

// It would also be legal to have written

// + occupant + " via the " + where + " door.");

}

}

void addDoor(String where, int which) {

doors[which] = this.new Door (where);

}

}

class Builder {

static House newHouse (String who) {

House result = new House (who, 2);

result.addDoor ("North", 0);

// or I could have used

// doors[0] = result.new Door ("North");

result.addDoor ("East", 1);

return result;

}

void checkOutHouse (House house) {

house.doors[0].enter ();

}

}

Figure 5.2: Result of h = Builder.newHouse ("T. C. Mits")
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Syntax.

LocalClassDeclaration: BasicClassDeclaration

Semantics. A local class is always an inner class. The scope of its declaration
is limited as for local variable declarations, so it cannot be named outside the
statement sequence that contains it. Otherwise, local classes are like other inner
classes, with one additional capability: they have access to final (constant) local
variables and (within methods) to final parameters of the enclosing construct. For
example,

void f (int x, final int y) {

int z = 19;

final int q = 42;

class Inner {

int a, b;

void g () {

a = q + y; // Legal

// a = x; // ILLEGAL

// a = z; // ILLEGAL

}

}

...

}

5.7.3 Anonymous classes

An anonymous class is essentially a local class (§5.7.2) that is used only once, and
so does not need a name. It makes its appearance only in allocator expressions (see
§6.6.1).

Syntax.

AnonymousClassAllocator:
OuterObjectopt new ClassOrInterfaceType ( Expression∗, )

Extendsopt Implementsopt
{ ClassBodyDeclaration∗ }

OuterObject: Operand .

Anonymous class declarations may not explicitly define constructors, and must also
conform to the usual restrictions on inner and local classes.

Semantics. Writing

new T(E1, . . . , En) { ... }

Cross references: BasicClassDeclaration 87.
Cross references: ClassBodyDeclaration 87, ClassOrInterfaceType 76, Expression 119, Extends
87, Implements 87, Operand 119.
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is essentially like writing

new ANONYMOUS(E1, . . . , En)

after first having written the local declaration

class ANONYMOUS
extends T
// or implements T if T is an interface

{

ANONYMOUS (T1x1, . . . , Tnxn) {

super (x1, . . . , xn);
}

...

}

It simply allows you to avoid some writing and to avoid creating a new name.

5.7.4 What on earth is this all for?

I commend to you the exercise of figuring out how to get the essential effects of
nested classes in their absence. For the most part, one can easily come up with
top-level classes that do the same things. One might reasonably wonder, therefore,
why anyone would bother with the rather substantial added semantics.

Static nested classes clearly serve only to avoid cluttering packages with names
of classes that are used only in the implementation of a single class. They differ
from top-level classes only in the fact that they can get at the private variables of
the class they are nested in.

Inner member classes add a little more: they arrange automatically for special
fields that contain pointers back to some “parent object.” Still, this does not seem
to be an enormous service.

The really interesting cases are local classes and anonymous classes, because
these do something that isn’t easily attained by other means in Java: give methods
access to local variables of another method. They provide us with a kind of restricted
function closure, such as is available in the Scheme language.

Suppose you wanted to write a program to select all elements of a list that meet
certain criteria:

/** Return list of all x in A for which P.test(x) is true. */

List select (List A, Predicate p) {

List result = new List ();

List last;

last = result;

for (List L = A; L != null; L = L.next) {

if (P.test (L.head))

last = last.next = new List (L.head, null);

}
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return result.next;

}

where Predicate is an interface:

public interface Predicate {

/** True iff OBJ satisfies this Predicate. */

boolean test (Object obj);

}

I can use these definitions to write a function that removes all instances of a given
string from a list of strings:

/** Return result of removing all instances of X from L. */

public List removeAll (final String x, List L) {

return select

(L,

new Predicate() {

boolean test (Object obj) {

return ! obj.equals (x);

}

});

}

Admittedly, this is not as concise as the Scheme equivalent:

(define removeAll (x L)

(select L (lambda (obj) (not (equal? obj x)))))

but then, nothing ever is.
In Java programs, inner classes, including anonymous classes, see most of their

use in providing call backs for GUI interfaces. The term “call back” refers to func-
tions (or function-like things) that the programmer passes to the routines in a
graphical user interface library to inform the system of actions to take whenever
certain events occur.

5.8 Method (Function) Declarations

For reasons that I confess not to understand, where other programming languages
use terms like “procedure,” “subprogram,” or “function,” object-oriented languages
(including Java) use the term method. To avoid confusion, I’ll do so here, but bear
in mind that there really isn’t anything new about methods per se. We’ll discuss
the details of calling methods in §6.8. This section describes how to define them.

Syntax

MethodDeclaration:
TypeParametersopt MethodModifier+ MethodSignature ;

TypeParametersopt MethodModifier∗ MethodSignature MethodBody
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MethodSignature:
Type SimpleName Formals Throwsopt
void SimpleName Formals Throwsopt

MethodModifier:
public | protected | private
final | static | abstract
native
synchronized
Annotation

Formals:
( Parameter∗, )

( Parameter+, , VarArgs )
( VarArgs )

Parameter: finalopt Type SimpleName
VarArgs: finalopt Type ... SimpleName
Throws: throws ClassType+,
MethodBody: Block

(We’ll discuss TypeParameters in Chapter 10.) A method without a MethodBody
must be either abstract or native. Abstract methods may not be private, final,
static, native, or synchronized.

5.8.1 Variable-Length Parameter Lists

The trailing formal parameter is allowed to stand for an arbitrary number (zero or
more) of actual parameters. A signature such as

public void printf (String format, Object... args)

is essentially the same as

public void printf (String format, Object[] args)

That is, in the body of printf, you can refer to the array args as usual. However,
when you call this method, you have the option of providing, instead of a formal
parameter of type Object[], a sequence of 0 or more values compatible with type
Object. The call

printf ("%s = %d%n", name, value);

is then equivalent to

printf ("%s = %d%n", new Object[] { name, value });

So, in effect, printf takes a variable number—one or more—of parameters. Using
the terminology of the C language, args is a varargs parameter. The Scheme and
Common Lisp languages have a similar feature.

Let’s take a full example with an actual implementation:

Cross references: Annotation 116, Block 168, ClassType 76, SimpleName 82, Type 76, TypePa-
rameters 234.
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/** A String consisting of the concatenation of the items in ARGS,

* separated by SEPARATOR. */

public static String makeList (String separator, String ... args) {

String result;

result = "";

for (int i = 0; i < args.length; i += 1) {

if (i > 0)

result += separator;

result += args[i];

}

return result;

}

Now with this definition, we can write:

makeList (" ", "The", "quick", "brown", "fox")

produces "The quick brown fox"

Also,

String[] words = { "The", "quick", "brown", "fox" };

makeList (" ", words) produces "The quick brown fox"

has the same result.

5.8.2 Method signatures

The MethodSignature part of a method declaration gives the syntactic specification
of the method: how it is called and what kind of results it might have—everything
except how it works. A method call (§6.8) looks like

f(E1, . . . En)

or
X.f(E1, . . . En)

In the applicable method signature, f is the SimpleName, and there are n Param-
eters, whose types must be compatible with the types of the expressions Ei (again,
see §6.8). The Type tells you what type of value it returns10, according to the same
rules as for local declarations described in §5.2 (the same rules also apply to the
types of Parameters). The special “return type” void marks a function that does
not return a value.

If the method has a MethodBody , then the SimpleNames in the Parameters
give names for local variables that contain the parameter values, which then may
be used in the body. These local variables are called the formal parameters of the

10There is an alternative syntax for returning arrays, inherited from C. One may write, for
example, int foo()[][] instead of int[][] foo(). I haven’t shown it because as a stylistic
matter, I believe you shouldn’t use it. Similarly, I have left out the old syntax for array-valued
parameters, e.g., int A[] (in fact, Dennis Ritchie himself regretted adding that syntax to C).
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method. They may be assigned to like ordinary local variables, unless the parameter
is marked final.

As described in Chapter 8, methods may, instead of returning a value, raise
an exception. The Throws clause lists exceptions (or some of them) that may be
thrown as a result of calling the method. See §8.3 for a fuller description.

Method Modifiers. See §5.11 for the meanings of public, private, and pro-
tected. A method that is final may not be overridden in any subclasses of a
class. A method that is abstract has no body, and must be overridden in any
non-abstract subclass (that is, in any class that can have instances). Only abstract
classes may contain abstract methods. Classes can obtain methods by inheritance
from superclasses and interfaces, so in non-abstract classes, such inherited abstract
methods also have to be overridden.

Static methods (also called class methods) are like ordinary functions or proce-
dures in other programming languages. They are not subject to overriding (§5.8.4).
A static method g defined in a class Y like this:

static double g (double x) { ... }

is typically called like this:

Y.g(4.2)

where Y is a class containing the definition of static method g (possibly by inheri-
tance).

Non-static methods (called instance methods) have, in effect, an extra, implicit
parameter. An instance method f defined in a class Y like this:

double f (double x) { ... }

is typically called like this:

E.f(4.2)

where E yields a value of type Y (or some subclass) . Roughly it is as if f had been
declared

static double f (final Y this, double x) { ... }

and called like this:

Y.f (E, 4.2)

(the special variable name this is reserved for this purpose). However, there is one
major difference not captured by this approximate rewriting: the effect of overriding,
covered in §5.8.4.

There are two ways to implement a method: one can supply a MethodBody , or
one can declare the method to be native. A native method is what is sometimes
called a foreign function in other languages. In effect, it is an extension of the Java
interpreter or compiler you are using. It is typically implemented in some language
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other than Java (such as C or assembly language) and can do things that no non-
native Java method can do. How you actually supply the body of a native method
depends on the implementation of Java you are using, and we will not cover them
further in this document.

5.8.3 Overloading and hiding methods

It is possible to have multiple methods in the same class (explicitly or through
inheritance) that have the same name. When two such methods have different
numbers or types of argument types, we say that they overload each other. They
are two entirely unrelated methods, and which one is referred to by a particular call
depends on which best fits the arguments to that call. For example,

void f () { ... } /* (1) */

int f (String y) { ... } /* (2) */

double f (int y) { ... } /* (3) */

void f (char y) { ... } /* (4) */

void f (int y, int y) { ... } /* (5) */

void f (int y, char c) { ... } /* (6) */

void f (char c, int y) { ... } /* (7) */

(these are instance methods, but the same rules apply to static methods and to
constructors (§5.9). Consider the call

x.f()

(assuming x is a variable of the appropriate type). Just looking at x.f, it is am-
biguous which f we are referring to. However, only declaration (1) specifies an f

without parameters, so that is the method that is called. Likewise,

x.f("Hello")

refers unambiguously to declaration (2). In general, to figure out which method
to call, Java will only consider methods in which the static types of the actual
parameters (that is, the parameters in the call statement) are call convertible to
the types of the formal parameters: that is, only if all possible values of the actual
parameter type may be assigned to a variable having the formal parameter’s type
(see §6.2.2).

This rule still leaves some ambiguities to resolve. Since any char value can be
contained in an int, the rule leaves two choices, (3) and (4), for the call

x.f (’c’)

This ambiguity is resolved in favor of (4) by the second rule of overload resolution:
given a choice between two methods, pick the more specific one: the one whose
formal parameters’ types are all call convertible to the formal parameter types of
the other. Since every char value fits in an int, but not every int fits in a char,
method (4) is more specific (“pickier”).

Not all overloaded calls can be resolved. For example,
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x.f (’a’, ’b’)

This call fits either (5), (6), or (7). However, while (6) is more specific than (5),
and (7) is more specific than (5), neither (6) nor (7) is more specific than the other,
so the call is ambiguous (and therefore erroneous).

Do these rules seem complicated? You wouldn’t be alone in thinking so (al-
though the corresponding rules in C++ make these look positively trivial). Some
authorities go so far as to shun overloading altogether. I don’t, but do by all means
avoid obscure cases like the combination of (5)–(7).

Resolving which overloaded function to call is a static process. The actual values
of the variables in a call are irrelevant. So, for example, if a is an int variable, then
x.f(a) always refers to declaration (3), not (4), even if a happens to contain a
value, like 3, that fits into a char.

We’ve dealt so far only with methods whose parameter lists differ. No two
methods defined in the same class or interface may have the same number and
types of parameters. If a class explicitly defines a static method with the same
number and types and parameters as an inherited method, we say that the explicit
definition hides the inherited one. Calls are unambiguously resolved to the explicit
definition. When one method declaration hides another, the return types must be
the same. Frankly, there is seldom any good reason to hide a method, and it is
generally confusing to readers of a program when you do so. Instance methods
with the same parameter types do not hide each other; one overrides the other, as
described next.

5.8.4 Overriding

When an inherited instance method (i.e., not static) and an explicitly declared
instance method have the same name and the same number and types of parameters,
we say that the explicitly declared method overrides the inherited method rather
than hiding it. The return type of the overriding method must be a subtype of
the return type of the overridden method (in practice, one usually declares them to
return the same type).

When one method hides or overloads another, the two are still distinct meth-
ods, unrelated except by name. When one method overrides another, the methods
become related. For lack of established terminology, we’ll say that they are both
members of the same dynamic method set. The rules for calling an instance method,
as in x.f(...) start the same as for static methods: we select which method f refers
to (if ambiguous) based on the static type of x, and on the name (f) of the function
and the types of the arguments. At this point, things start to differ. First, the call
is legal only if x is not null (there is an exception otherwise). Next, the method
actually called is the member of that method’s dynamic method set that is defined
(either by inheritance or overriding) in the dynamic type of the object referenced
by x.

The fairly simple statement of this rule hides some rather non-intuitive conse-
quences, but it is the basis of what is called “object-oriented” behavior. Let’s look
at what it means. Consider the following declarations.
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class Actor {

static void print (String s) {

System.out.println (s);

}

static void whereAmI () { print ("in Actor"); }

String whatAmI () { return "Actor"; } // (1)

void act () { // (2)

print ("whatever a(n) " + this.whatAmI () + " does.");

}

}

class Pinger extends Actor {

static void whereAmI () { print ("in Pinger"); }

String whatAmI () { return "Pinger"; } // (3)

void act () { print ("ping"); } // (4)

}

class Ponger extends Actor {

static void whereAmI () { print ("in Ponger"); }

String whatAmI () { return "Ponger"; } // (5)

}

In this example, declarations (1), (3), and (5) form one dynamic method set, and
declarations (2) and (4) form another. If we call the following function:

void doThings () {

Actor anActor, anotherActor;

Pinger aPinger;

Ponger aPonger;

aPinger = new Pinger ();

aPonger = new Ponger ();

anActor = aPinger; anotherActor = aPonger;

aPinger.whereAmI (); aPonger.whereAmI ();

anActor.whereAmI ();

aPinger.act (); aPonger.act ();

anActor.act (); anotherActor.act ();

}

here is what gets printed:

in Pinger

in Ponger

in Actor

ping

whatever a(n) Ponger does.

ping

whatever a(n) Ponger does.
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The first three lines of output are easy to understand. The function whereAmI is
static. Therefore, we determine which of the three whereAmI methods to call by
looking at the static types of aPinger, aPonger, and anActor. The result of calling
aPinger.act() might also seem clear, since the Pinger class overrides the act

method.

The call aPonger.act() calls the act method inherited from Actor, since that
is not overridden in Ponger. The call to whatAmI in Actor’s act method refers to
declaration (1), but since this is an instance method, our rule says that the method
that actually gets called is determined by the kind of object that this is actually
pointing to. Since aPonger happens to be pointing at a Ponger, instead of calling
method (1), we instead call method (5): same dynamic method set, but found by
looking in the class of the object currently referenced by aPonger.

Again, although the call anActor.act() selects declaration (2)—act defined in
Actor—act is an instance method, and so the method that is actually called is (4),
as determined by the kind of object anActor is actually pointing to at the moment.
A similar analysis explains anotherActor.act().

Restrictions on overriding. The effect of the relationship between methods
in a dynamic method set is that when you appear to be calling a method in the
set that is defined in one class, you may actually end up calling any of the other
methods in the set from classes that override it. For example, if x is of type P, then
x.f(3) looks like a call to the method f defined in class P, but, depending on the
value of x, it could instead call C.f, where C is a subclass of P. But the legality
of the parameters you pass to f and of the type of the return value (among other
things) are determined from the method you appear to be calling, that is, from
the declaration of P.f. Therefore, there are certain things about the declarations
of methods that override each other that have to agree. If method f in type C
overrides f in class P (that is, C extends or implements P and f has the same
number and types of parameters in each), then

• Both P.f and C.f must be non-static;

• The return type of C.f must be a subtype of that of P.f .

• C.f must be at least as accessible as P.f (see §5.11);

• The exception types covered by the throws list for P.f must include all those
covered by the throws list in C.f (if any).

The guiding principle here is “no surprises.” Since when you call P.f , you might get
C.f , you want the return type and possible exceptions declared for P.f to describe
what you get back from the call. Likewise, if C.f would be illegal due to access
restrictions, you don’t want there to be a “back door” for calling it.
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5.9 Constructor Declarations

A constructor is a non-inherited, unnamed function that is called in a restricted way
and adorned with special syntax.

Syntax

ConstructorDeclaration:
ConstructorModifier∗ SimpleName Formals Throwsopt

{ ExplicitConstructorCallopt BlockStatement∗ }

ConstructorModifier:
public | protected | private | Annotation

ExplicitConstructorCall:
this ( Expression∗, ) ;

super ( Expression∗, ) ;

The SimpleName in a constructor must be the name of the class that contains it.
This is just a syntactic convention (borrowed from C++); the name is not, properly
speaking, the “name of the constructor”—calling x.C(...) in a class C will simply
call an ordinary method named C11, not the constructor.

Semantics. Whenever you create a new object (other than an array) of some
type, T , using the syntax

new T(E1, . . . , En)

Java’s first operation upon the newly created object is to call the appropriate con-
structor, as if you had written something like

new_object = create a new T;

new_object.<init>(E1, . . . , En);

where I use <init> to denote the (unmentionable) name of the constructor func-
tion. Ordinary overloading rules apply, with the proviso that constructors are not
inherited. Constructors don’t allocate new objects; they are intended to give you a
chance to initialize them.

The body of the constructor works just like that of an ordinary instance method.
However, you are allowed to call other constructors in the first statement (only) of
the constructor’s body, using the ExplicitConstructorCall . If you omit this call,
Java automatically inserts as a default

super ();

Cross references: Annotation 116, BlockStatement 168, Expression 119, Formals 100, Throws
100.

11Yes, you can use class names for ordinary function names, since there cannot be any confusion
between when you are using a class name and when you are calling a function, and since constructor
declarations differ from ordinary function declarations in that they have no explicit return type.
No, don’t ever do this, regardless of the legalities of the matter, unless you are deliberately trying
to obscure your program!
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The effect of this(E1, . . . En) is to call the constructor in the current class that
matches the argument list (matching the same constructor that contains this call
results, as usual, in an infinite recursion). The effect of super(E1, . . . En) is to call
the constructor in the direct superclass that matches the argument list.

Every class contains at least one constructor. If (and only if) you don’t provide
any explicitly in a class named C, then Java automatically provides the default
constructor declaration

public C() {

super ();

}

The default constructor matches the default super() call that Java inserts when
you don’t have an ExplicitConstructorCall .

There is one exception to all these rules: the (built-in) constructor for class
Object, which has no superclass, does not call any other constructor.

5.9.1 Rationale.

The philosophy behind all these rules and defaults is that

1. That the language should guarantee that a constructor “blesses” every object
that gets created.

2. When a class C extends a class P , P ’s constructors must be called to initialize
the “P part” of each C, and since P “knows” nothing of the existence of C,
this initialization must happen before any initialization specific to C.

You can see how this philosophy is reflected in the design of Java’s constructors:

• If you supply no constructor, Java creates a default constructor automatically
(guaranteeing point 1), and all this does is to call the default constructor of
the super class (guaranteeing point 2).

• If you explicitly supply a constructor, it must begin with a call to another con-
structor—either in the same class (this(...)) or in the superclass (super(...)).
If you don’t supply such a call, super() is inserted. This guarantees point 2:
either your constructor goes into a loop, or it eventually calls a constructor
for its superclass.

Let’s consider an example:

class Unit {

// public Unit () { super (); } // (1) implicit

}

class Single extends Unit {

public Single (int x) { this.x = x; } // (2)

public Single () { this (0); } // (3)
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public int getX () { return x; }

private int x;

}

class Double extends Single {

public Double (int x, int y) // (4)

{ super (x); this.y = y }

public Double (int x) { this(x, 0); } // (5)

public Double () { this (0); } // (6)

public int getY () { return y; }

private int y;

}

and the statement

Double D = new Double ();

First, we create a new object of type Double, having the two fields x and y. Next,
we call the matching constructor, (6). That constructor contains only a call on the
one-argument constructor, (5), which in turn calls the two-argument constructor,
(4), with 0s as the two arguments. Constructor (4) first calls constructor (2), which
is found in Double’s superclass. That constructor implicitly calls the constructor for
Unit, which is itself implicit, and which does nothing except call the constructor for
class Object (which also does nothing in particular, for your information). Next,
constructor (2) sets the x field of the object and returns. Constructor (4) now sets
the y field. Finally, we return from (4), then (5), and then (6).

This example illustrates a couple of extraneous points. First, I have followed
the convention of naming constructor parameters the same as the fields they are
destined to initialize. The use of this.x allows me to tell Java when I mean the
field and when I mean the parameter. Second, because the field x is private (see
§5.11), it would be illegal to set it in Double; I must use a constructor for Single
to initialize it.

5.9.2 Instance and field initializers

Besides the code you explicitly write into a constructor and the calls to other con-
structors implicitly inserted by the compiler, constructors also implicitly handle
other initialization included in a class.

Syntax.

InstanceInitializer: Block
FieldDeclaration:

FieldModifier∗ Type InitDeclarator+, ;

InitDeclarator: Declarator VarInit

Cross references: Block 168, Declarator 85, FieldModifier 90, VarInit 85.
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The syntax for field declarations above covers only the case of explicitly initialized
fields. This section is only concerned with non-static fields. An InstanceInitializer
may not contain a return statement.

Semantics. Each non-static FieldDeclaration that contains an explicit initializa-
tion (VarInit), and each InstanceInitializer , contributes code to all constructors
that explicitly or implicitly start with the constructor call super(...).

Each VarInit contributes an assignment to its field, and the InstanceInitializers
are inserted as is. For example, the class on the left is equivalent to the one shown
on the right:

class A {

int x = 42;

String name;

A (String name) {

super ();

this.name = name;

}

A () {

super ();

this.name = null;

}

A (int x) {

this ("" + x);

}

{

B.register (this);

}

}

class A {

int x;

String name;

A (String name) {

super ();

this.x = 42;

{

B.register (this);

}

this.name = name;

}

A () {

super ();

this.x = 42;

{

B.register (this);

}

this.name = null;

}

A (int x) {

this ("" + x);

}

}
Well, almost equivalent; there is one small difference: the instance initializers do
not “see” the formal parameters of the constructors they are inserted into. If you
write programs where this makes a difference, you are probably being gratuitously
obscure.

5.9.3 Some Useful Constructor Idioms

Uninstantiatable classes have no instances. This is appropriate for a class
containing only static methods and fields. The class in this case is intended merely
as a convenient packaging construct for this cluster of definitions. It makes no sense
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to create instances of such a class. To document and enforce this property, one
useful trick (more politely called an idiom) is to define only a private constructor
in the class, like this:

public class UsefulStuff {

/** Non-instantiatable */

private UsefulStuff () { }

static void sort (int A[]) { · · · }

...

}

Any attempt outside the class to write new UsefulStuff() attempts to call the
parameterless constructor, but since this is private, it is not accessible, and the
allocation is illegal.

Singleton classes have only one instance, appropriately called a Singleton12.
Such a class is useful when a particular object represents something unique within
a program, like “the file system.” One way to accomplish this is again to define a
class with only private constructors that initializes a field using this constructor:

public class OneOf {

private OneOf (· · ·) { · · · }

public final static OneOf THE_ONE = new OneOf ();

...

}

The class OneOf is, of course, able to call its own constructor. The field OneOf.THE_ONE
is the one and only object of type OneOf that will ever exist; nothing outside the
class OneOf is allowed to create another.

Copy constructors create new objects that are copies of existing instances. They
have a form like this:

class MyClass {

...

public MyClass (MyClass x) { · · · }

...

}

where the body of the constructor does whatever is appropriate to to cause this to
be a “copy of” x. Typically, this would mean that after

12The term is often capitalized like this to emphasize that it is the name of a design pattern,

as the term is defined in Design Patterns: Elements of Reusable Object-Oriented Software, by E.
Gamma, R. Helm, R. Johnson, and J. Vlissides, Addison-Wesley, 1995.
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z = new MyClass(y);

we will have z != y and z.equals(y), or at least, we would expect the object
referenced by z to behave just like that referenced by y.

Many authorities believe that the copy constructor idiom is preferable to over-
riding the clone method (which is defined as a protected method for all classes in
class java.lang.Object)13.

5.10 Initialization of Classes

The design of Java anticipates having your program modify itself as it runs by
loading classes “on-the-fly,” possibly as a result of computation. One consequence
is that classes are not actually initialized until they are first used—more precisely,
a type T is not initialized until either

• An instance of T is created with new, or

• A static method of T is called, or

• A static field of T is assigned to, or

• The value of a static field of T is used, and the field is not a final field initialized
by a constant expression (§6.9).

When any of these happen, the class is initialized by initializing its static fields and
executing its static initializers.

Syntax.

StaticInitializer: static Block
FieldDeclaration:

FieldModifier∗ static FieldModifier∗ Type InitDeclarator+, ;

InitDeclarator: Declarator VarInit

The syntax for field declarations above covers only the case of explicitly initialized
fields. A StaticInitializer may not contain a return statement.

Semantics. In effect, all the assignments to static fields (other than assignments
of constant expressions to final fields14) and all the StaticInitializers, in the or-
der in which they appear, are gathered to together into a single anonymous static
initialization method. This method is then called when a class is initialized.

13See, for example, J. Bloch, Effective Javatm: Programming Language Guide, Addison-Wesley,
2001, pp. 45–52.
Cross references: Block 168.

14The reason for this exception is that final fields initialized by constant expressions never have
to be made “real” by an implementation. Since compilers “know” what value they have (their
initializers being constant expressions and it being impossible to assign to them again), the compiler
can always just substitute this value for occurrences of the field.
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For example, the class on the left corresponds conceptually to the one shown on
the right (where <clinit> stands for the anonymous static initialization function):

class A {

static int x = B.f(42);

int y = 42;

static {

System.out.print ("OK");

}

...

}

class A {

static int x;

int y = 42;

static void <clinit> () {

x = B.f(42);

{

System.out.print ("OK");

}

}

}
In effect, the system calls <clinit>() after loading the class.

5.11 Access control

One common theme you’ll find throughout software engineering is the distinction
between specifications and implementations of those specifications. Certain meth-
ods and constructors of a class are intended to be used by clients of that class.
Others are for internal use, part of the implementation of the class that are not
intended for outside eyes. Indeed, entire classes may have no other use than as tools
used to implement other classes. Collectively, we refer to classes and members that
are intended for general use by clients as the public or external specification of our
program.

Corresponding to these concepts, it is common in modern object- oriented lan-
guages to provide language features that allow programmers to restrict the avail-
ability of some parts of a program component. These features add nothing whatever
to what the language allows us to do; they are a sort of enforced documentation of
the programmer’s intent.

In Java, it is possible to control what parts of a program may mention a given
(Java) interface, class, or class member. A class or interface may be declared public,
which means that that class or interface may be referred to by name in any part of a
program. A non-public class or interface may be referred to only within the package
in which it is declared. Members of classes may be declared private, protected,
or public; otherwise, they are said to have package-private or default access15.
Roughly, for an item defined in class M ,

• Private access is limited to the declaration of class M ,

• Package-private access additionally includes all classes in the same package as
M ,

• Protected access additionally includes all subclasses of M , and

15The official term is default access. I agree with those, like Joshua Bloch, who prefer the more
descriptive package-private.
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• Public access is unlimited.

That is, each kind of access specification in this list expands the one before it.
Figure 5.3 illustrates these specifications in more detail. It uses only methods as
examples, but the same applies to fields and constructors.

The one really tricky case involves the rules for protected access. As you
can see from looking at class E in Figure 5.3, the protected method prot_f may be
accessed as this.prot_f() (which is the same as just writing prot_f()), but not as
x.prot_f(). The actual rule is that inside E, one can access the protected members
of P1.A using pointers whose static type is E (or some subclass of it). Within the
text of E, the value of this has type E, so this.prot_f() is legal. However, x is
not necessarily an E, so x.prot_f() is illegal.

5.12 The Java Program

Java programs are collections of type definitions—that is, of definitions of classes
(§5.4) and interfaces (§5.5). Programs are split up into source files or compilation
units.

Syntax.

CompilationUnit:
PackageClauseopt ImportClause∗ TypeDeclaration∗

The PackageClause indicates what package (§5.1.3) the TypeDeclarations belong
to. The ImportClauses simply provide shortcuts for naming selected types used in
the TypeDeclarations.

5.12.1 Executing a Program

The execution of the program consists of having the Java virtual machine (of-
ten called “the system” in other languages) call an ordinary function named main

(sometimes called the main program), defined in some class and having the header

static void main (String[] args) ...

The official definition of Java does not specify exactly how one specifies in which
class to look for main or where the arguments come from. Using Sun’s JDK (Java
Development Kit), for example, the command line

java Foo -o 1 glorp.baz

uses Foo.main as the main program, and passes it an array of three strings, "-o",
"1", and "glorp.baz". This sort of invocation is typical of a standalone application,
a self-contained program run by user command.

Java has gained a great deal of popularity as a language in which to write applets,
programs that are shipped over the Internet in response to some action by a browser

Cross references: ImportClause 84, PackageClause 83, TypeDeclaration 87.
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package P1; | package P2;

|

public class A { | public class D {

public void pub_f() { } | void func(P1.A x) {

private void priv_f() { } | x.pub_f();

protected void prot_f() { } | x.priv_f(); // ILLEGAL

void deflt_f() { } | x.prot_f(); // ILLEGAL

} | x.deflt_f(); // ILLEGAL

| }

class B { | }

void func(A x) { |

x.pub_f(); | class E extends P1.A {

x.priv_f(); // ILLEGAL | void func(P1.A x) {

x.prot_f(); | x.pub_f();

x.deflt_f(); | x.priv_f(); // ILLEGAL

} | x.prot_f(); // ILLEGAL

} | x.deflt_f(); // ILLEGAL

| this.pub_f();

class C extends A { | this.priv_f(); // ILLEGAL

void func(A x) { | this.prot_f();

x.pub_f(); | this.deflt_f();// ILLEGAL

x.priv_f(); // ILLEGAL | }

x.prot_f(); | }

x.deflt_f(); |

this.pub_f(); |

this.priv_f(); // ILLEGAL |

this.prot_f(); |

this.deflt_f(); |

} |

} |

Figure 5.3: Illustration of the meanings of access qualifiers public, private, and
protected.



116 CHAPTER 5. DECLARATIONS

and then executed by that browser. In this case, things are bit more complicated.
The main program is provided by the browser and the applet itself contains a class
with a rather more complicated interface. You are still writing a program in this
case, but it is one that runs in a special framework that is suitable for graphical
user interfaces.

5.13 Annotations

The various kinds of modifier presented elsewhere in this chapter describe various
properties of the things declared in the declarations they modify. With Java 2,
version 1.5, it became possible to extend this set of properties pretty much arbitrar-
ily by defining and applying annotations. You may decorate basically any kind of
declaration with annotations that supply compile-time information (or meta-data)
that the compiler and other parts of your program may query. We’re not going to
go into much detail here, except to give some syntax and describe a few pre-defined
annotations.

Syntax.

Annotation:
@ TypeName AnnotationArgumentsopt

AnnotationArguments:
( ElementValue∗, )

( ElementValuePair∗, )

ElementValue:
Operand
Annotation
{ ElementValue∗, ,opt }

ElementValuePair: Identifier = ElementValue

So basically, an annotation is just a name or a kind of function call, preceded by
an ‘@’ symbol. Each ElementValue must be a constant expression (§6.9)—roughly
some kind of literal, enumeral, or simple expression or array constructor involving
these things and predefined operations. Unlike ordinary calls, annotations may have
keyword arguments:

@SuppressWarnings(value="unchecked")

ArrayList<String> getList (Object obj) {

return (ArrayList<String>) obj;

}

and they may use a shorthand version of the syntax for specifying array values:

@SuppressWarnings({ "fallthrough", "deprecated" })

A single argument (in this last example, a single array) without a keyword is short
for a single keyword argument with the keyword value.

Cross references: Identifier 79, Operand 119, TypeName 82.
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As these two examples illustrate, another shorthand used in annotations is that
one-element arrays need not be surrounded in braces, so that

@SuppressWarnings(value="unchecked") and

@SuppressWarnings(value={"unchecked"})

are equivalent.
In the rest of this section, I’ll describe some useful predefined annotations. You

can introduce new ones using modified interface declarations (introduced by @in-
terface rather than interface). However, that capability is more than we need for
this book.

5.13.1 Deprecated

The marker (parameterless) annotation Deprecated indicates that programmers
should avoid using a certain definition, typically because that definition is obsolete
and likely to be replaced in future versions of the software. The effect is simply to
cause the compiler to issue a warning if a program uses the declaration. The Java
library uses this annotation extensively:

/**

* Deprecated: As of JDK version 1.1,

* replaced by <code>setVisible(boolean)</code>.

*/

@Deprecated

public void hide() {

etc.
}

It is good practice, as shown here, to put an explanation into the documentation
comment that indicates what one should use instead of hide.

5.13.2 Override

This is another marker annotation that indicates that a certain method declaration
overrides one in a superclass. Like @Deprecated, it serves as documentation; its
only effect is to cause the compiler to issue a message if the method does not, in
fact, do so (which usually indicates a misspelling or some error in the parameter
list). For example,

class MyIterator<T> implements Iterator<T> {

@Override

T next () {

etc.
}

...

}
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By using this annotation, you can pick up certain common errors, such as over-
loading a method when you intended to override it. For example,

class MyClass extends Object {

...

@Override

public boolean equals (MyClass obj) {

...

}

}

will warn you that the signature of equals does not match that of the definition of
equals in Object (which takes an argument of type Object, not MyClass).

5.13.3 SuppressWarnings

This annotation tells the compiler not to warn about certain things, specified by an
array of strings that name the warnings. Here are a few common ones:

”all” suppresses all warnings.

”unchecked” suppresses warnings about certain type checks that the program
will not perform and that may possibly cause errors later in the program.
For example, using ArrayList rather than ArrayList<String> for a list of
Strings will cause this error.

”deprecation” suppresses warnings about use of deprecated features.

”fallthrough” suppresses warnings about switch statements (see §7.2.2) in which
it is possible for control to flow from one branch to another:

switch (color) {

case Red:

x = 3;

// At this point, we "fall through" to the Blue case.

case Blue:

x = 2;

break;

}

In general, you should attach such annotations to the smallest possible declaration
(don’t suppress warnings on an entire class when you only need suppress them for a
couple of methods). You should never suppress a warning unless there is no other
reasonable way to shut the compiler up.



Chapter 6

The Expression Language

In programming languages, expressions are constructs that yield values when exe-
cuted. We use the term to distinguish things like x+3, which presumably produces
a number, from statements—such as

if (x > y) y = x;

which does something (has an effect), but which produces no specific number or
other quantity as a result—and from declarations, whose purpose is to introduce
new names. The lines between expressions, statements, and declarations tend to
be blurred in Java, as in many similar languages. For example, the usual use of
an assignment such as x = y+3 is to change the value of x, so it functions as a
statement. However, the language specifies that it also has a value; you can, in fact,
write z + (x = y+3), using the assignment as a value. Likewise, a declaration such
as

int x = 3;

both introduces the name x and, like an assignment statement, modifies its value.
Expressions can have effects (called side effects in that case, on the grounds that
the expression’s main purpose ought to be producing a value). Nevertheless, it is
useful to separate expressions from statements when describing a language. In fact,
you will sometimes hear mentions of “the expression language” of a programming
language, meaning that subset of the language comprising the expressions.

6.1 Syntactic overview

Syntax. Here is the top-level syntax for the Java expression language:

Expression:
Operand
Assignment

Operand: UnaryExpression
BinaryExpression
Operand ? Expression : Operand

119
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UnaryExpression:
UnaryOperator Operand
Cast
PostfixExpression

BinaryExpression:
Operand BinaryOperator Operand
Operand instanceof Type

Assignment: LeftHandSide AssignmentOperator Expression
LeftHandSide: Name | FieldAccess | ArrayAccess
PostfixExpression:

Primary
PostfixExpression IncrDecr

Primary: Allocator
OtherPrimary

OtherPrimary: Name
This
Literal
( Expression )

ArrayAccess
FieldAccess
Call

StatementExpression:
Assignment
Call
ClassAllocator ;

IncrDecr UnaryExpression
PostfixExpression IncrDecr

UnaryOperator: + | - | ~ | ! | IncrDecr
BinaryOperator:

* | % | / | + | -

<< | >> | >>>

< | > | <= | >= | == | !=

& | ^ | |

&& | ||

IncrDecr: ++ | --

AssignmentOperator:
= | *= | /= | %= | += | -= |
<<= | >>= | >>>= | &= | ^= | |=

Semantics. An Expression is used for its value. A StatementExpression is a kind
of Expression that may have side-effects and that may be used as a statement,
with its value ignored (see §7.4 and the definition of Statement at the beginning

Cross references: Allocator 143, ArrayAccess 148, Assignment 120, Call 156, Cast 123, ClassAl-
locator 144, FieldAccess 144, Literal 122, Name 82, This 158.
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of that chapter). A parenthesized expression, (E), has the same meaning as E;
the parentheses serve to explicitly delimit the operands of an expression, overriding
precedence and associativity (see §6.1.1).

6.1.1 Prefix, Postfix, and Infix Operators

In the Lisp family of languages, the beginnings and ends of all expressions and
subexpressions (operands) are clearly marked:

(* (+ a b) c)

unambiguously means “compute a+b and multiply that result by c.” In what we call
algebraic languages, a category that includes C, Basic, Fortran, Java, Ada, Pascal,
PL/1, Algol, and most other languages you can think of, we use infix notation
(operator in the midst of the expression) with implicit parentheses. This introduces
opportunities for ambiguity.

It is insufficient to say that “if E0 and E1 are (sub)expressions, then E0−E1 and
E0*E1 are also expressions,” because that bare statement is ambiguous about the
meanings of many expressions. For example, by these rules, x-y-z might validly be
interpreted as either (x-y)-z or as x-(y-z), which differ in value, but which both
have the form of nested subtractions. The question is one of how to associate (or
group) the variables with operators. Common usage (adopted by Java) is that we
choose the first alternative, placing implicit parentheses around x-y; we say that
the binary (two-operand) subtraction operator associates left or is left associative.
Likewise, the expression x-y*z might validly be interpreted as either (x-y)*z or
x-(y*z), also with different values. Common usage (again used by Java) is to
take the second interpretation—to say that * has higher precedence or groups more
tightly than -.

This leads to a common way to describe unary (one-operand) and infix operator
expressions: we list the possible operators in order of precedence and give the
associativity of operators that have the same precedence. Table 6.1 gives this list for
Java. Some operators appear twice because they stand for two different operators,
depending on context. The unary operators ++ and -- can be either prefix operators
(appearing before the operand) or postfix operators (appearing after the operand).
The operators + and - can be either unary prefix operators or binary infix operators.

Semantics. Once the proper grouping of operands with operators is established,
either by explicit parentheses or by precedence and association rules, the operands
of all expressions described in this section are evaluated from left to right (in a few
cases—the operators &&, ||, and ?:—some of the operands may be skipped)1. For

1You will sometimes see the questions of evaluation and grouping carelessly muddled together in
descriptions such as “multiplications are performed before additions.” As the example here shows,
this is inaccurate—indeed, it is as inaccurate in C or Fortran as it is in Java. In an expression such
as x+y*z the point is not that “the multiplication happens before the addition,” but rather that
the things that are multiplied are y and z, as opposed to x+y and z. It may sound like nit-picking,
I know, but details are important in programming, and you should develop a habit of precision.
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See Category Operators

Highest precedence
§6.6.4, §5.1.2, Postfix  [ ]  .name  ++  --

§6.7
§6.7, §6.3.2, §6.4, §6.5.2 Prefix ++ -- + - ~ !

§6.2.1 Cast ( ) 

§6.3.2, §6.4 Infix * / %

§6.3.2, §6.4, §9.2  +  - 

§6.3.3 << >> >>>

§6.5.3 < > >= <= instanceof

§6.5.3 == !=

§6.3.3 &

§6.3.3 ^

§6.3.3 |

§6.5.2 &&

§6.5.2 ||

§6.5.4  ? : 

§6.7 Right = += -= *= /= %= >>=

Associative <<= <<<= &= ^= |=

Lowest precedence

Table 6.1: Table of operators, ordered by precedence. All but the last line are left
associative. Where present, the  symbols indicate the placement of operands.

example, the expression f(x)+f(y)+f(q)*f(r) is grouped as (f(x)+f(y))+(f(q)*f(r)).
Therefore, we first evaluate f(x), then f(y), then the sum of f(x)+f(y), then
f(q), then f(r), then the product f(q)*f(r), and finally the sum of f(x)+f(y)
and f(q)*f(r).

6.1.2 Literals

Java’s primitive values are divided into the numeric types—byte, char, short,
int, long, float, and double—and the type boolean. Correspondingly, there are
literals (basically, constants whose text directly (literally) denotes their values) of
types char, int, long, float, double, and boolean. In addition, there are two
kinds of pointer-valued literals, for strings and the null pointer.

Syntax.

Literal:
IntegerLiteral
RealLiteral
CharacterLiteral
StringLiteral
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BooleanLiteral
NullLiteral

6.2 Conversions and Casts

The types of values in Java are related to each other, and there are well-defined
conversions between some pairs of types (the term coercion is also used). Some
conversions are implicit: the language defines that they occur in certain contexts
even without any particular syntax. Otherwise, the programmer can call for con-
versions explicitly where needed by use of a syntactic construct called a cast.

A value of any type may be converted to that type (the identity conversion). A
value of any numeric type may be converted to any other numeric type, but not to
the type boolean or to any reference type. Primitive types cannot be converted
to reference types or vice-versa. A reference value whose dynamic type is T may
be converted to any type R if T extends or implements R. Null values may be
converted to any reference type.

Conversions in general convert values of one type to “analogous” values of an-
other. When the target (converted-to) type contains at least all the values of the
source (converted-from) type, we call the operation a widening conversion. For
example, conversion of bytes to ints is a widening, since every byte value is numer-
ically an int value as well. Otherwise, we have a narrowing conversion. In addition,
conversions to float and double from integer types are classified as widenings, even
though they may lose some some significant bits. In general, the implicit conversions
are limited to widenings.

6.2.1 Explicit conversions

A cast is an explicit conversion2.

Syntax.

Cast: ( Type ) UnaryExpression

Semantics. A cast has the static type given by its Type. Consider a cast of
expression E to type T , where E has static type S and dynamic type D. It is legal
(that is, causes no error at compilation time) iff

• T and S are numeric types, or

Cross references: IntegerLiteral 126, RealLiteral 136, BooleanLiteral 142 CharacterLiteral 128,
NullLiteral 143, StringLiteral 151.

2The official syntax is rather more complicated than this, for technical reasons having to do
with the implementation of Java parsers. For our purposes, however, this simple form works just
as well. The problem has to do with dealing with such expressions as (x)-y, which could be be
casts (convert -y to type x) or could instead be additions, depending on whether x is a type name.
I am going to pretend that this question is resolved by looking to see whether x denotes a type,
even though that isn’t really how it’s done.
Cross references: Type 76, UnaryExpression 120
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• T and S are both boolean, or

• T and S are both reference types and there is (or there could be defined)
a subclass of S that is also a subclass of T . (Intuitively, it must not be
completely impossible to write a program in which a pointer declared to be
of type T points to something of that has a subtype of S. For example, if S
is Object, then (T)E is legal for any reference type T . On the other hand,
if S is type String, then (Exception)E is illegal, since no matter what class
declarations you add, no String will ever be an Exception.)

Conversions of integer types to other integer types produce the same value,
modulo the target type’s size (see §6.3). Conversions of any number to types double
or float yield the closest value of the target type. Conversions from types double
or float to integer types first truncate to an integer (throw away the fraction) and
then convert as for integer-to-integer conversions. The value NaN (Not a Number)
converts to 0, and the infinities convert to the largest or smallest values of the target
type.

Only the identity conversion is allowed for type boolean.
A conversion of a reference type (when it is legal according to the rules above)

causes no change to the value; it just adjusts the static type—the compiler’s idea
of what the value might be pointing to. However, the conversion does throw an
exception (ClassCastException) if the value of E is not null (casts of null never
cause an exception) and the dynamic type D is not a subtype of target type T . For
example, if variable x is declared to have type Object, then (as indicated above),

(String) x

is legal (because Strings are Objects, so on the surface it might work). However,
it will throw an exception when evaluated if in fact x contains, for example, the
value System.out (a PrintStream object), because while that is indeed a kind of
Object, it is not a String.

6.2.2 Implicit conversions

When a certain context requires a value of a given type, you can use any expression
whose value can be implicitly converted to that type. The implicit conversions (also
called widening conversions) are as follows:

• All identity conversions;

• byte to any numeric type;

• short to any numeric type other than byte and char;

• char to any numeric type other than byte and short;

• int to long;

• Any integer type to float or double;
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• float to double;

• Any subtype of reference type T to type T ;

• The literal null to any reference type.

The right-hand sides of assignments (§6.7), the actual parameters to method calls
(§6.8), and the Expressions in initializers (§6.6.4, §5.2) are all implicitly converted,
if needed, to the appropriate type.

6.2.3 Promotions

Promotions are numeric widening conversions used in arithmetic operations. The
operands of numeric operations are never bytes, shorts, or chars; whenever an
operand has one of those types, it is promoted to a larger numeric type. Also, one
operand of a binary numeric operation may be promoted to balance the expression:
to give both operands the same type.

Unary promotion applies to unary operators, to the operands of shifts (see
§6.3.3), and to array index values (§6.6.4).

• Types short, byte, and char are widened to int.

• The identity conversion for all other types.

Binary promotion applies to numeric binary operators other than shifts:

• If one operand has type double, the other is widened to type double;

• Otherwise, if one operand has type float, the other is widened to type float;

• Otherwise, if one operand has type long, the other is widened to type long;

• Otherwise, both operands are widened to type int.

6.3 Integers and Characters

The Scheme language has a notion of integer data type that is particularly con-
venient for the programmer: Scheme integers correspond directly to mathematical
integers and there are standard functions that correspond to the standard arith-
metic operations on mathematical integers. While convenient for the programmer,
this causes headaches for those who have to implement the language. Computer
hardware has no built-in data type that corresponds directly to the mathematical
integers, and the language implementor must build such a type out of more primitive
components. That is easy enough, but making the resulting arithmetic operations
fast is not easy.

Historically, therefore, most “traditional” programming languages don’t provide
full mathematical integers either, but instead give programmers something that
corresponds to the hardware’s built-in data types. As a result, what passes for
integer arithmetic in these languages is at least quite fast. What I call “traditional”
languages include FORTRAN, the Algol dialects, Pascal, C, C++, Java, Basic, and
many others. The integer types provided by Java are in many ways typical.
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Type Modulus Minimum Maximum

long 264 −263 263 − 1
(−9223372036854775808) (9223372036854775807)

int 232 −231 231 − 1
(−2147483648) (2147483647)

short 216 −215 215 − 1
(−32768) (32767)

byte 28 −27 27 − 1
(−128) (127)

char 216 0 216 − 1
0 (65535)

Table 6.2: Ranges of values of Java integral types. Values of a type represented
with n bits are computed modulo 2n (the “Modulus” column).

6.3.1 Integral values and their literals

Syntax

IntegerLiteral: IntegerNumeral IntegerTypeSuffixopt
IntegerNumeral: 0

PositiveDigit DecimalDigit+

0 OctalDigit+

0x HexDigit+

0X HexDigit+

PositiveOctalDigit: 1 | 2 | 3 | 4 | 5 | 6 | 7

OctalDigit: 0 | PositiveOctalDigit
PositiveDigit: PositiveOctalDigit | 8 | 9

DecimalDigit: 0 | PositiveDigit
HexDigit:

DecimalDigit
a | b | c | d | e | f

A | B | C | D | E | F

IntegerTypeSuffix: l | L

An integer literal is an atomic element of the syntax (or token); it may not contain
whitespace, and must be separated from other tokens that can contain letters and
digits by whitespace or punctuation.

Semantics. The integral values in Java differ from the ordinary mathematical
integers in that they come from a finite set (or domain). Specifically, the five integer
types have the ranges shown in Table 6.2. As we will see in §6.3.2, arithmetic on
Java integers is also different from familiar arithmetic; Java usesmodular arithmetic:
when a computation would “overflow” the range of values for a type, the value
yielded is a remainder of division by some modulus.
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Only types char, int, and long specifically have literals. The IntegerLiterals
above denote values of type long if suffixed with a lower- or upper-case letter ‘L’,
and otherwise denote values of type int. You have your choice of decimal, octal
(base 8), and hexadecimal (base 16) numerals. The digits for the extra six values
needed for base 16 are denoted by the letters a–f in either upper or lower case. To
get values of other types, you can use a cast, as discussed in §6.2. Thus,

(short) 15 // is a short value

(byte) 15 // is a byte value.

One odd thing about the syntax is that there is no provision for negative num-
bers. Instead, negative literals are treated as negated expressions elsewhere in the
grammar, so that, for example, -1 is treated as two tokens, a minus sign followed
by an integer literal. For your purposes, the effect is just about the same. Unfortu-
nately, because of this particular treatment, the language designers felt obliged to
introduce a small kludge. The legal decimal literals range from 0 to 2147483647 and
from 0L to 9223372036854775807L, since those are the ranges of possible positive
values for the types int and long. However, as you can see from Table 6.2, this
limit would not allow you to write the most negative numbers easily, so as a special
case, the two decimal literals 2147483648 and 9223372036854775808L are allowed
as long as they are the operands of a unary minus. This leads to the really obscure
and useless fact that:

x = -2147483648; // is legal, but

x = 0-2147483648; // is not!

And as if this weren’t enough, the range of octal and hexadecimal numerals is
bigger than that of decimal numerals. The maximum decimal numerals are 231 − 1
and 263 − 1, while the maximum octal and hexadecimal numerals have maximum
values of 232 − 1 and 264 − 1. The values beyond the decimal range represent
negative values, as we’ll see in §6.3.2. The reason for this puzzling discrepancy is
the assumption that decimal numerals are intended to represent integers used as
mathematical integers, whereas octal and hexadecimal values tend to be used for
other purposes, including as sequences of bits.

Characters

Character values (type char) are non-negative integers, a fact that causes consid-
erable confusion. Specifically, the integer values 0–65535 represent the characters
specified by the Unicode character set, version 2.0 (see §9.1.1). While you could,
therefore, refer to character values in your program by their integer equivalents,
it is generally considered much better (in particular, more readable) style to use
character literals, which make clear what character you are referring to:

if (c == ’a’) is preferable to if (c == 97)
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Escape Unicode Meaning Escape Unicode Meaning

\b \u0008 Backspace (BS) \r \u000d Carriage return (CR)
\t \u0009 Horizontal tab (HT) \" \u0022 Double quote
\n \u000a linefeed (LF) \’ \u0027 Single quote
\f \u000c Form feed (FF) \\ \u005c Backslash

Table 6.3: Escape sequences for use in character and string literals, with equiva-
lent Unicode escape sequences where they are legal. The carriage return, newline,
backslash, and single quote characters are illegal in character literals, as are their
Unicode escapes. Likewise, return, newline, backslash, and double quote characters
are illegal in string literals.

Syntax.

CharacterLiteral: ’ SingleCharacter ’

’ EscapeSequence ’

SingleCharacter: Any Unicode character except CR, LF, ’ or \
EscapeSequence:

\b | \t | \n | \f | \r | \" | \’ | \\

OctalEscape
OctalEscape: ZeroToThree OctalDigitopt OctalDigitopt
ZeroToThree: 0 | 1 | 2 | 3

Here, ‘LF’ and ‘CR’ refer to the characters “linefeed” (also referred to as newline)
and “carriage return.” See §9.1.1 on how to write arbitrary Unicode characters
using the \u notation.

The escape sequences are intended to give somewhat mnemonic but still con-
cise representations for control characters (things that don’t show up as printed
characters) and for a few other values beyond the limits of the ASCII character set
(that is, the subset of Unicode in which almost all Java code is written). They also
allow you to insert characters that are not allowed by the SingleCharacter syntax:
carriage returns, linefeeds, single quotes, and backslashes.

An OctalEscape represents a numeric value represented as an octal (base-8)
numeral. It differs from an octal IntegerNumeral only in that it yields a value of
type char rather than int. Octal escapes are considered moderately passé in Java;
\u or the other escape sequences are officially preferred. The other escape sequences
denote the characters indicated in Table 6.3.

Examples.

’a’ // Lower-case a

’A’ // Upper-case A

’ ’ // Blank

’\t’ // (Horizontal) tab character

’\011’ // Another version of horizontal tab

’\u03b4’ // Greek lower-case delta

’δ’ // Another way to write delta (if your
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// compiler supports it)

’c’ - ’a’ // The value 2 (’c’ is 99, ’a’ is 97).

’\377’ // Character value 255 (largest octal escape)

’\u00FF’ // Another way to write ’\377’

’ÿ’ // Another way to write ’\377’ (if your

// compiler supports it)

6.3.2 Modular integer arithmetic

The integral arithmetic operators in Java are addition (x+y), subtraction (x-y),
unary negation (-x), unary plus (+x), multiplication (x*y), integer division (x/y),
and integer remainder (x%y).

Syntax.

UnaryExpression: UnaryAdditiveOperator Operand
UnaryAdditiveOperator: + | -

BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: + | - | * | / | %

Semantics. The integer division and remainder operations yield integer results.
Division rounds toward 0 (i.e., throwing away any fractional part), so that 3/2 is
equal to 1 and both (-3)/2 and 3/(-2) are equal to -1. Division and remainder
are related by the formula

(x / y) * y + (x % y) ≡ x

so that

x % y ≡ x - ((x / y) * y)

Working out a few examples:

5 % 3 ≡ 5 - ((5 / 3) * 3) ≡ 5 - (1*3) ≡ 2

-5 % 3 ≡ (-5) - (((-5) / 3) * 3) ≡ (-5) - ((-1)*3) ≡ -2

5 % (-3) ≡ 5 - ((5 / (-3)) * (-3)) ≡ 5 - ((-1)*(-3)) ≡ 2

(-5) % (-3) ≡ (-5) - (((-5) / (-3)) * (-3))

≡ (-5) - (1*(-3))

≡ -2

Division or remaindering by 0 throws an ArithmeticException (see 8).

On integers, all of these operations first convert (promote) their operands to
either the type int or (if at least one argument is long) the type long. After
this promotion, the result of the operation is the same as that of the converted
operands. Thus, even if x and y are both of type byte, x+y and -x are ints. To be
more specific:

Cross references: Operand 119.
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To compute x⊕ y, where ⊕ is any of the Java operations +, -, *, /, or
%, and x and y are integer quantities (of type long, int, short, char,
or byte),

• If either operand has type long, compute the mathematical result
converted to type long.

• Otherwise, compute the mathematical result converted to type int.

By “mathematical result,” I mean the result as in normal arithmetic, where ‘/’ is
understood to throw away any remainder. Depending on the operands, of course,
the result of any of these operations (aside from unary plus, which essentially does
nothing but convert its operand to type int or long), may lie outside the domain
of type int or long. This happens, for example, with 100000*100000.

The computer hardware will produce a variety of results for such operations,
and as a result, traditional languages prior to Java tended to finesse the question of
what result to yield, saying that operations producing an out-of-range result were
“erroneous,” or had “undefined” or “implementation-dependent” results. In fact,
they also tended to finesse the question of the range of various integer types; in
standard C, for example, the type int has at least the range of Java’s type short,
but may have more. To do otherwise than this could make programs slower on some
machines than they would be if the language allowed compilers more choice in what
results to produce. The designers of Java, however, decided to ignore any possible
speed penalty in order to avoid the substantial hassles caused by differences in the
behavior of integers from one machine to another.

Java integer arithmetic is modular: the rule is that the actual result of any inte-
ger arithmetic operation (including conversion between integer types) is equivalent
to the mathematical result “modulo the modulus of the result type,” where the
modulus is that given in Table 6.2. In mathematics, we say that two numbers are
identical “modulo N” if they differ by a multiple of N :

a ≡ b mod N iff there is an integer, k, such that a− b = kN.

The numeric types in Java are all computed modulo some power of 2. Thus, the
type byte is computed modulo 256 (28). Any attempt to convert an integral value,
x, to type byte gives a value that is equal to x modulo 256. There is an infinity
of such values; the one chosen is the one that lies between −27 (−128) and 27 − 1
(127), inclusive. For example, converting the values 127, 0, and −128 to type
byte simply gives 127, 0, and −128, while converting 128 to type byte gives −128
(because 128−(−128) = 28 = 256) and converting 513 to type byte gives 1 (because
1 − 513 = −2 · 28). The result of 100000*100000, being of type int, is computed
modulo 232 in the range −231 to 231 − 1, giving 1410065408, because

1000002 − 1410065408 = 8589934592 = 2 · 232.

For addition, subtraction, and multiplication, it doesn’t matter at what point
you perform a conversion to the type of result you are after. This is an extremely
important property of modular arithmetic. For example, consider the computation



6.3. INTEGERS AND CHARACTERS 131

527 * 1000 + 600, where the final result is supposed to be a byte. Doing the
conversion at the last moment gives

527 · 1000 + 600 = 527600 ≡ −16 mod 256;

or we can first convert all the numerals to bytes:

15 · −24 + 88 = −272 ≡ −16 mod 256;

or we can convert the result of the multiplication first:

527000 + 600 ≡ 152 + 600 = 752 ≡ −16 mod 256.

We always get the same result in the end.
Unfortunately, this happy property breaks down for division. For example, the

result of converting 256/7 to a byte (36) is not the same as that of converting 0/7 to
a byte (0), even though both 256 and 0 are equivalent as bytes (i.e., modulo 256).
Therefore, the precise points at which conversions happen during the computation
of an expression involving integer quantities are important. For example, consider

short x = 32767;

byte y = (byte) (x * x * x / 15);

A conversion of integers, like other operations on integers, produces a result of type
T that is equivalent to the mathematical value of V modulo the modulus of T . So,
according to the rules, y above is computed as

short x = 32767;

byte y = (byte) ((int) ((int) (x*x) * x) / 15);

The computation proceeds:

x*x --> 1073676289

(int) 1073676289 --> 1073676289

1073676289 * x --> 35181150961663

(int) 35181150961663 --> 1073840127

1073840127 / 15 --> 71589341

(byte) 71589341 --> -35

If instead I had written

byte y = (byte) ((long) x * x * x / 15);

it would have been evaluated as

byte y = (byte) ((long) ((long) ((long) x * x) * x) / 15);

which would proceed:

(long) x --> 32767

32767L * x --> 1073676289

(long) 1073676289L --> 1073676289

1073676289L * x --> 35181150961663

(long) 35181150961663L --> 35181150961663

35181150961663L / 15 --> 2345410064110

(byte) 2345410064110L --> -18
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Why this way? All these remainders seem rather tedious to us humans, but
because of the way our machines represent integer quantities, they are quite easy for
the hardware. Let’s take the type byte as an example. Typical hardware represents
a byte x as a number in the range 0–255 that is equivalent to x modulo 256, encoded
as an 8-digit number in the binary number system (whose digits—called bits—are
0 and 1). Thus,

0 --> 000000002
1 --> 000000012
2 --> 000000102
5 --> 000001012
127 --> 011111112
-128 --> 100000002 (≡ 128 mod 256)
-1 --> 111111112 (≡ 255 mod 256)

As you can see, all the numbers whose top bit (representing 128) is 1 represent
negative numbers; this bit is therefore called the sign bit . As it turns out, with this
representation, taking the remainder modulo 256 is extremely easy. The largest
number representable with eight bits is 255. The ninth bit position (1000000002)
represents 256 itself, and all higher bit positions represent multiples of 256. That
is, every multiple of 256 has the form

b0 · · · bn 00000000︸ ︷︷ ︸

8

,

which means that to compute a result modulo 256 in binary, one simply throws
away all but the last eight bits.

Be careful in this notation about converting to a number format that has more
bits. This may seem odd advice, since when converting (say) bytes (eight bits) to
ints (32 bits), the value does not change. However, the byte representation of -3
is 253, or in binary 111111012 , whereas the int representation of -3 is

111111111111111111111111111111012 = 4294967293.

In converting from a byte to an int, therefore, we duplicate the sign bit to fill in
the extra bit positions (a process called sign extension). Why is this the right thing
to do? Well, the negative quantity −x as a byte is represented by 28 − x, since
28 − x ≡ −x mod 28. As an int, it is represented by 232 − x, and

232 − x = (232 − 28) + (28 − x) = 111111111111111111111111000000002 + (28 − x).

6.3.3 Manipulating bits

Syntax.

UnaryExpression: ~ Operand
BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: & | ^ | | | << | >> | >>>

Cross references: Operand 119.
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Semantics. One can look at a number as a bunch of bits, as shown in the preced-
ing section. Java (like C and C++) provides operators for treating numbers as bits.
The bitwise operators—&, |, ^, and ~—all operate by lining up their operands
(after binary promotion) and then performing some operation on each bit or pair
of corresponding bits, according to the following tables:

Operand Bits (L,R)
Operation (0, 0) (0, 1) (1, 0) (1, 1)

& (and) 0 0 0 1
| (or) 0 1 1 1
^ (xor) 0 1 1 0

Operand Bit
Operation 0 1

~ (not) 1 0

The “xor” (exclusive or) operation also serves the purpose of a “not equal” opera-
tion: it is 1 if and only if its operands are not equal.

In addition, the operation x<<N produces the result of multiplying x by 2N (or
shifting N 0’s in on the right). x>>>N produces the result of shifting N 0’s in on
the left, throwing away bits on the right. Finally, x>>N shifts N copies of the sign
bit in on the left, throwing away bits on the right. This has the effect of dividing
by 2N and rounding down (toward −∞). The left operand of the shift operand is
converted to int or long by unary promotion (see §6.2.3), and the result is the same
as this promoted type. The right operand is taken modulo 32 for int results and
modulo 64 for long results, so that 5<<32, for example, simply yields 5.

For example,

int x = 42; // == 0...0101010 base 2

int y = 7; // == 0...0000111

x & y == 2 // 0...0000010 | x << 2 == 168 // 0...10101000

x | y == 47 // 0...0101111 | x >> 2 == 10 // 0...00001010

x ^ y == 45 // 0...0101101 | ~y << 2 == -32 // 1...11100000

~y == -8 // 11...111000 | ~y >> 2 == -2 // 1...11111110

| ~y >>> 2 == 230 − 2
| // 00111...1110

| (-y) >> 1 == -4

As you can see, even though these operators manipulate bits, whereas ints are
supposed to be numbers, no conversions are necessary to “turn ints into bits.”
This isn’t surprising, given that the internal representation of an int actually is a
collection of bits, and always has been; these are operations that have been carried
over from the world of machine-language programming into higher-level languages.
They have numerous uses; some examples follow.

Masking

One common use for the bitwise-and operator is to mask off (set to 0) selected
bits in the representation of a number. For example, to zero out all but the least
significant 4 bits of x, one can write
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x = x & 0xf; // or x &= 0xf;

To turn off the sign bit (if x is an int):

x &= 0x7fffffff;

To turn off all but the sign bit:

x &= 0x80000000;

In general, if the expression x&~N masks off exactly the bits that x&N does not.

If n ≥ 0 is less than the word length of an integer type (32 for int, 64 for long),
then the operation of masking off all but the least-significant n bits of a number of
that type is (as we’ve seen), the same as computing an equivalent number modulo
2n that is in the range 0 to 2n − 1. One way to form the mask for this purpose is
with an expression like this:

/** Mask for the N least-significant bits, 0<=N<32. */

int MASK = (1<<n) - 1;

[Why does this work?] With the same value of MASK, the statement

xt = x & ~MASK;

has the interesting effect of truncating x to the next smaller multiple of 2n [Why?],
while

xr = (x + ((1 << n) >>> 1)) & ~MASK;

// or

xr = (x + ((~MASK>1) & MASK)) & ~MASK;

// or, if n > 0, just:

xr = (x + (1 << (n-1))) & ~MASK;

rounds x to the nearest multiple of 2n [Why?]

Packing

Sometimes one wants to save space by packing several small numbers into a single
int. For example, I might know that w, x, and y are each between 0 and 29 − 1. I
can pack them into a single int with

z = (w<<18) + (x<<9) + y;

or

z = (w<<18) | (x<<9) | y;

From this z, I can extract w, x, and y with

w = z >>> 18; x = (z >>> 9) & 0x1ff; y = z & 0x1ff;
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(In this case, the >> operator would work just as well.) The hexadecimal value
0x1ff (or 1111111112 in binary) is used here as a mask ; it suppresses (masks out)
bits other than the nine that interest us. Alternatively, you can perform the masking
operation first, extracting x with

x = (z & 0x3fe00) >>> 9;

In order to change just one of the three values packed into z, we essentially have
to take it apart and reconstruct it. So, to set the x part of z to 42, we could use
the following assignment:

z = (z & ~0x3fe00) | (42 << 9);

The mask ~0x3fe00 is the complement of the mask that extracts the value of x;
therefore z&~0x3fe00 extracts everything but x from z and leaves the x part 0. The
right operand is simply the new value, 42, shifted over into the correct position for
the x component (I could have written 378 instead, but the explicit shift is clearer
and less prone to error, and compilers will generally do the computation for you so
that it does not have to be re-computed when the program runs). Likewise, to add 1
to the value of x, if we know the result won’t overflow 9 bits, we could perform the
following assignment:

z = (z & ~0x3fe00) | ((((z & 0x3fe00) >>> 9) + 1) << 9);

Actually, in this particular case, I could also just write

z += 1 << 9;

[Why?]

6.4 Floating-Point Numbers

Syntax.

UnaryExpression: UnaryAdditiveOperator Operand
UnaryAdditiveOperator: + | -

BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: + | - | * | / | %

Semantics. Just as it provides general integers, Scheme also provides rational
numbers—quotients of two integers. Just as the manipulation of arbitrarily large
integers has performance problems, so too does the manipulation of what are es-
sentially pairs of arbitrarily large integers. It isn’t necessary, furthermore, to have
large rational numbers to have large integer numerators and denominators. For
example, (8/7)30 is a number approximately equal to 55, but its numerator has 28
digits and its denominator has 27. For most of the results we are after, on the other
hand, we need considerably fewer significant digits, and the precision afforded by

Cross references: Operand 119.
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large numerators and denominators is largely wasted, and comes at great cost in
computational speed.

Therefore, standard computer systems provide a form of limited-precision ra-
tional arithmetic known as floating-point arithmetic. This may be provided either
directly by the hardware (as on Pentiums, for example), or by means of standard
software (as on the older 8086 processors, for example).

Java has adopted what is called IEEE Standard Binary Floating-Point Arith-
metic. The basic idea behind a floating-point type is to represent only numbers
having the form

±b0.b1 · · · bn−1 × 2e,

where n is a fixed number, e is an integer in some fixed range (the exponent), and
the bi are binary digits (0 or 1), so that b0.b1 · · · bn−1 is a fractional binary number
(the significand) There are two floating-point types:

• float: n = 24 and −127 < e < 128;

• double: n = 53 and −1023 < e < 1024.

In addition to ordinary numbers, these types also contain several special values:

• ±∞, which represent the results of dividing non-zero numbers by 0, or in
general numbers that are beyond the range of representable values;

• −0, which is essentially the same as 0 (they are ==, for example) with some
extra information. The difference shows up in the fact that 1/-0.0 is negative
infinity. Used properly, it turns out to be a convenient “trick” for giving
functions desired values at discontinuities. Take a course in numerical analysis
if you are curious.

• NaN, or Not A Number, standing for the results of invalid operations, such as
0/0, or subtraction of equal infinities.

To test x to see if it is infinite, use Double.isInfinite(x). One checks a value x

to see if it is not a number with Double.isNaN(x) (you can’t use == for this test
because a NaN has the odd property that it is not equal, greater than, or less than
any other value, including itself!) Because of these NaN values, every floating-point
expression can be given a reasonable value.

6.4.1 Floating-Point Literals

Syntax

RealLiteral:
DecimalDigit+ . DecimalDigit∗ Exponentopt FloatTypeopt
. DecimalDigit+ Exponentopt FloatTypeopt
DecimalDigit+ Exponent FloatTypeopt
DecimalDigit+ Exponentopt FloatType
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Exponent:
e Signopt DecimalDigit+

E Signopt DecimalDigit+

Sign: + | -

FloatType: f | F | d | D

As for integer literals, no embedded whitespace is allowed. Upper- and lower-case
versions of FloatType and of the ‘e’ in Exponents are equivalent. Literals that end
in f or F are of type float, and all others are of type double. There are no negative
literals, since the unary minus operator does the trick, as for integer literals.

An Exponent of the form ‘E±N ’ means ×10±N , and otherwise these literals
are interpreted as ordinary numbers with decimal points. For example, 1.004e-2
means 0.01004. However, since the floating-point types do not include all values
that one can write this way, the number you write is first rounded to the nearest
representable value. For example, there is no exact 24-bit binary representation for
0.2; its binary representation is 0.00110011. . . . Therefore, when you write 0.2f,
you get instead 0.20000000298. . . .

Floating-point literals other than zero must be in the range

1.40239846e-45f to 3.40282347e+38f (float)

4.94065645841246544e-324 to 1.79769313486231570e+308 (double)

The classes java.lang.Float and java.lang.Double in the standard library
contain definitions of some useful constants.

Double.MAX VALUE, Float.MAX VALUE The largest possible values of type
double and float.

Double.MIN VALUE, Float.MIN VALUE The smallest possible values of type
double and float.

Double.POSITIVE INFINITY, Float.POSITIVE INFINITY +∞ for types
double and float.

Double.NEGATIVE INFINITY, Float.NEGATIVE INFINITY
−∞ of type double and float.

Double.NaN, Float.NaN A Not-A-Number of type double and float.

6.4.2 Floating-point arithmetic

In what follows, I am going to talk only about the type double. This is the default
type for floating-point literals, and in the type commonly used for computation.
The type float is entirely analogous, but since it is not as often used, I will avoid
redundancy and not mention it further. The type float is useful in places where
space is at a premium and the necessary precision is not too high.

Cross references: DecimalDigit 126.
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The floating-point arithmetic operators in Java are addition (x+y), subtraction
(x-y), unary negation (-x), unary plus (+x), multiplication (x*y), division (x/y),
and remainder (x%y). The remainder operation obeys the same law as for integers:

(x / y) * y + (x % y) ≡ x

except that division is floating-point division rather than integer division; it doesn’t
discard the fraction.

The result of any arithmetic operation involving ordinary floating-point quanti-
ties is rounded to the nearest representable floating-point number (or to ±∞ if out
of range). In case of ties, where the unrounded result is exactly halfway between
two floating-point numbers, one chooses the one that has a last binary digit of 0
(the rule of round to even.) The only exception to this rule is that conversions of
floating-point to integer types, using a cast such as (int) x, always truncate—that
is, round to the number nearest to 0, throwing the fractional part away3.

The justifications for the round-to-even rule are subtle. In computations involv-
ing many floating-point operations, it can help avoid biasing the arithmetic error
in any particular direction. It also has the very interesting property of preventing
drift in certain computations. Suppose, for example, that a certain loop has the
effect of computing

x = (x + y) - y;

on each of many iterations (you wouldn’t do this explicitly, of course, but it may
happen to one of your variables for certain particular values of the input data). The
round-to-even rule guarantees that the value of x here will change at most once,
and then drift no further (a remarkably hard thing to prove, I’m told, but feel free
to try).

So far, we’ve discussed only the usual cases. Operations involving the extra
values require a few more rules. Division of a positive or negative quantity by zero
yields an infinity, and −0 reverses the sign of the result. Dividing ±0 by ±0 yields
a NaN, as does subtraction of equal infinities, division of two infinite quantities, or
any arithmetic operation involving NaN as one of the operands.

In principle, I’ve now said all that needs to be said. However, there are many
subtle consequences of these rules. You’ll have to take a course in numerical analysis
to learn all of them, but for now, here are a few important points to remember.

Binary vs. decimal

Computers use binary arithmetic because it leads to simple hardware (i.e., cheaper
than using decimal arithmetic). There is, however, a cost to our intuitions to
doing this: although any fractional binary number can be represented as a decimal
fraction, the reverse is not true. For example, the nearest double value to the
decimal fraction 0.1 is

0.1000000000000000055511151231257827021181583404541015625
3The handling of rounding to integer types is not the IEEE convention; Java inherited it from

C and C++.
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so when you write the literal 0.1, or when you compute 1.0/10.0, you actually get
the number above. You’ll see this sometimes when you print things out with a little
too much precision. For example, the nearest double number to 0.123 is

0.12299999999999999822364316 . . .

so that if you print this number with the %24.17e format from our library, you’ll
see that bunch of 9s. Fortunately, less precision will get rounded to something
reasonable.

Round-off

For two reasons, the loop

double x; int k

for (x = 0.1, k = 1; x <= N; x += 0.1, k += 1)

{ ... }

(where 10N < 231) will not necessarily execute 10N times. For example, when N

is 2, 3, 4, or 20, the loop executes 10N − 1 times, whereas it executes 10N times
for other values in the range 1–20. The first reason is the one mentioned above:
0.1 is only approximately representable. The second is that each addition of this
approximation of 0.1 to x may round. The rounding is sometimes up and sometimes
down, but eventually the combined effects of these two sources of error will cause
x to drift away from the mathematical value of 0.1k that the loop naively suggests.
To get the effect that was probably intended for the loop above, you need something
like this:

for (int kx = 1; kx <= 10*N; k += 1) {

double x = kx * 0.1;

// or double x = (double) kx / 10.0;

(The division is more accurate, but slower). With this loop, the values of x involve
only one or two rounding errors, rather than an ever-increasing number. Still,
IEEE arithmetic can be surprisingly robust; for example, computing 20*0.1 rounds
to exactly 2 (a single multiplication is more accurate than repeated additions).

On the other hand, since integers up to 253 − 1 (about 9× 1015) are represented
exactly, the loop

for (x = 1.0, k = 1; x <= N; x += 1.0, k += 1) { ... }

will execute exactly N times (if N < 253) and x and k will always have the same
mathematical value. In general, operations on integers in this range (except, of
course, division) give exact results. If you were doing a computation involving inte-
gers having 10–15 decimal digits, and you were trying to squeeze seconds, floating-
point might be the way to go, since for operations like multiplication and division,
it can be faster than integer arithmetic on long values.

In fact, with care, you might even use floating-point for financial computations,
computed to the penny (it has been done). I say “with care,” since 0.01 is not
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exactly representable in binary. Nevertheless, if you represent quantities in pennies
instead of in dollars, you can be sure of the results of additions, subtractions, and
(integer) multiplications, at least up to $9,999,999,999,999.99.

When the exponents of results exceed the largest one representable (overflow),
the results are approximated by the appropriate infinity. When the exponents get
too small to represent at all (underflow), the result will be 0. In IEEE (and Java)
arithmetic, there is an intermediate stage called gradual underflow , which occurs
when the exponent (e in the formula above) is at its minimum, and the first signif-
icand bit (b0) is 0.

We often describe the rounding properties of IEEE floating-point by saying that
results are correct “to 1/2 unit in the last place (ulp),” because rounding off changes
the result by at most that much. Another, looser characterization is to talk about
relative error. The relative-error bound is pessimistic, but has intuitive advantages.
If x and y are two double quantities, then (in the absence of overflow or any kind
of underflow) the computed result, x*y, is related to the mathematical result, x · y,
by

x*y = x · y · (1 + ǫ), where |ǫ| ≤ 2−53.

and we say that ǫ is the relative error (it’s bound is a little larger than 10−16, so
you often hear it said that double-precision floating point gives you something over
15 significant digits). Division has essentially the same rule.

Addition and subtraction also obey the same form of relative-error rule, but with
an interesting twist: adding two numbers with opposite signs and similar magnitudes
(meaning within a factor of 2 of each other) always gives an exact answer. For
example, in the expression 0.1-0.09, the subtraction itself does not cause any
round-off error (why?), but since the two operands are themselves rounded off, the
result is not exactly equal to 0.01. The subtraction of nearly equal quantities tends
to leave behind just the “noise” in the operands (but it gets that noise absolutely
right!).

Spacing

Unlike integers, floating-point numbers are not evenly spaced throughout their
range. Figure 6.1 illustrates the spacing of simple floating-point numbers near 0 in
which the significand has 3 bits rather than Java’s 24 or 53. Because the numbers
get farther apart as their magnitude increases, the absolute value of any round-off
error also increases.

There are numerous pitfalls associated with this fact. For example, many numer-
ical algorithms require that we repeat some computation until our result is “close
enough” to some desired result. For example, we can compute the square root of a
real number y by the recurrence

xi+1 = xi +
y − x2i
2xi

where xi is the ith approximation to
√
y. We could decide to stop when the error
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· · · · · ·
0 1/8 1/4 1/2

Figure 6.1: Non-negative 3-bit floating-point numbers near 0, showing how the
spacing expands as the numbers get bigger. Each tick mark represents a floating-
point number. Assume that the minimum exponent is −4, so that the most closely
spaced tick marks are 2−6 = 1/64 apart.

|y − x2i | become small enough4. If we decided that “small enough” meant, say,
“within 0.001,” then for values of y less than 1 we would get very few significant
digits of precision and for values of y greater than 1013, we’ll never stop. This is one
reason relative error, introduced in the last section, is useful; no matter where you
are on the floating-point scale, round off always produces the same relative error.

Comment on floating-point equality.

Some textbooks incorrectly tell you never to compare floating-point numbers for
equality, but rather to check to see whether they are “close” to each other. This is
highly misleading advice (that’s more diplomatic than “wrong,” isn’t it?). It is true
that naive uses of == can get you into trouble; for example, you should not expect
that after setting x to 0.0001, x*10000==1.0, since x will not be exactly equal to
1/10000. That simply follows from the behavior of round off, as we’ve discussed.

However, one doesn’t have to be naive. First, we’ve seen that (up to a point)
double integers work like ints or longs. Second, IEEE standard arithmetic is de-
signed to behave very well around many singularities in one’s formulas. For example,
suppose that f(x) approaches 0 as x approaches 1—for concreteness, suppose that
f(x) approximates lnx—and that we want to compute f(x)/(1 − x), giving it the
value 1 when x = 1. We can write the following computation in Java:

if (x == 1.0)

return 1.0;

else

return f(x) / (1.0 - x);

and it will return a normal number (neither NaN nor infinity) whenever x is close to
1.0. Despite rounding errors, IEEE arithmetic guarantees that 1.0-x will evaluate
to 0 if and only if x==1.0.

6.5 Booleans and Conditionals

Booleans represent logical values. They have the smallest domain of the primitive
types: just the two values true and false.

4In actual practice, by the way, this convergence test isn’t necessary, since the error in x
2

i as a
function of i is easily predictable for this particular formula.
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6.5.1 Boolean literals

Syntax.

BooleanLiteral: true | false

Boolean literals denote the logical truth values implied by their names, which are
the only values of type boolean.

6.5.2 Boolean operations

Syntax.

UnaryExpression: ! Operand
BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: & | ^ | | | && | ||

Semantics. The operators & (logical and), | (logical or), and ^ (exclusive or) also
operate on booleans. The results are the same as for the individual bits of integers
subjected to these operators, treating 1 as true and 0 as false. The ! operator is
logical not (analogous to the bitwise complement operator ~). All of these operators
yield boolean results.

There are two additional operators that apply only to logical quantities. Condi-
tional and (&&) is the same as & except that it does not evaluate its second operand
unless the first is true. For example, the expression

x > 0 & 15/x > 3

will throw an ArithmeticException if x is 0, but

x > 0 && 15/x > 3

will not, since 15/x is not evaluated if x is 0. Likewise, conditional or (||) is the
same as | except that it does not evaluate its second operand if the first is true.

The tradition in C, C++, and now Java is that for boolean operations, you use &&
and || rather than & and |, even when it doesn’t matter whether you evaluate both
operands. The latter two operators are still useful in bitwise operations (§6.3.3).

6.5.3 Comparisons and Equality

Syntax.

BinaryExpression: Operand BinaryOperator Operand
BinaryOperator: < | > | <= | >= | == | !=

Cross references: Operand 119.
Cross references: Operand“ 119.
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Semantics. The relational and equality operators compare their operands and
produce boolean results. All the operators apply to numeric operands: <=, >=, ==,
and != are pure ASCII notations for the mathematical operators ≤, ≥, =, and 6=
(since = has been usurped for assignment, in the great tradition of FORTRAN). For
numeric operands, the two operands undergo the standard binary promotions.

The two equality operators, == and != apply to all types. However, for the
reference types, equality and inequality don’t quite mean what you might think.
Reference values are pointers, and so these operators mean equality and inequality
of pointers. That is, if x and y are references, then x==y iff they contain the same
pointer value: that is, if they point to the same object. The contents of the objects
pointed to by x and y (their fields’ values) are irrelevant.

6.5.4 Conditional expressions

Syntax.

Operand: Operand ? Expression : Operand

Semantics. The expression B?Et:Ef evaluates B, which must be a boolean ex-
pression, and then either evaluates and yields the value of Et if B was true, or
Ef if B was false. Conditional expressions (as opposed to if· · ·else statements)
are not terribly popular in algebraic languages such as C and Java, as contrasted
with languages like Lisp. Indeed, you won’t find them in Fortran, Pascal, Ada, and
numerous other languages. Frankly, the syntax doesn’t help; I recommend keeping
them small and using parentheses freely.

The rules for the type of a conditional expression are a bit complicated, since the
expressions Et and Ef may have different (compatible) types. If the types of these
expressions are the same, that is the type of the conditional expression. Otherwise,
the expression is legal only if one of the operands is assignable (as by an assignment
operation) to T , the type of the other. In that case, the type T is the type of the
conditional expression. Thus, x>y ? "Hello" : null returns a String, since null
can be assigned to variables of type String. Also, x>y ? ’c’ : x+2 has type int,
if x is an int.

6.6 Reference Types

There are two kinds of literals for the reference (pointer) types, the null literal,
which applies to all reference types, and String literals. We’ll deal with strings in
§9.2. The other way to create reference values is to use the operator new in an
Allocator .

Syntax.

NullLiteral: null
Allocator: ClassAllocator | ArrayAllocator

Cross references: Expression 119, Operand 119.
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As described in §4.1.2, all reference types include a distinguished null value, appro-
priately denoted null in Java. It is the default initial value for any container with
a reference type.

6.6.1 Allocating class instances

The new operator creates objects. We’ll deal with array objects in §6.6.4. For other
objects,

Syntax.

ClassAllocator: OuterObjectopt new ClassType ( Expression∗, )

OuterObject: Operand .

AnonymousClassAllocator

We’ll deal with anonymous classes in §5.7.3 and deal with the more common case
here.

Semantics. The effect of a ClassAllocator is to create a new object of the named
type, and then to call the constructor for that class that matches the arguments
(the list of Expressions), as for an ordinary method call. Constructors are special
functions whose purpose is to initialize an object once it is allocated. Before the
constructor is called, the fields have their default values, 0 for all numeric fields,
false for all boolean fields, and null for all fields with reference types. See §5.9 for
more details.

The second form is for allocating instances of inner classes. The Operand must
evaluate to a non-null reference value, X, (else NullPointerException) and the
SimpleName must be the name of an inner class defined in the static type of this
reference. The resulting instance is associated with X as described in §5.7.

6.6.2 Field Access

Field accesses extract fields (instance and class variables) from objects.

Syntax

FieldAccess:
Operand . Identifier
super . Identifier

There are a couple of syntactic anomalies here. First, since Operands can be Names,
there is a redundancy here with the presence of the Qualifier syntax presented in
§5.1.2. We’re going to take FieldAccesses to be restricted to cases where the thing
to the left of the dot represents some kind of value, as opposed to a type or package.

Cross references: ArrayAllocator 150, ClassAllocator 144.
Cross references: AnonymousClassAllocator 97, ClassType 76, Expression 119, Operand 119,
SimpleName 82.
Cross references: Identifier 79, Operand 119.
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Second, since selection has highest precedence, the Operand in a FieldAccess can’t
be just anything. For example, the expression a+b.length means a+(b.length).

Semantics. Field accesses denote containers. The Expression to the left of the dot
must evaluate to a reference. If C is the static type (reference to class or interface,
see §4.2) of this reference, then the Identifier to the right of the dot must be the
name of a (possibly inherited) field defined in that class or interface. If the field
is an instance variable (see §5.4.4) as opposed to a static field, and the reference is
null (that is, you ask Java to extract a field from the non-existent “null object”),
then the program will implicitly throw the exception NullPointerException.

If class C extends a class P , then the expression super.x, when used in an
instance method of C, means “the value that this.x would have in an instance
method of P .” As a result, it gives access to fields in the superclass of C that
might be hidden in C itself. If a field x is defined in P (either directly or through
inheritance), and C hides the declaration of x, then super.x, refers to this hidden
field. The practice of hiding fields of one’s superclass is sufficiently questionable
that you are not going to see very much about super on fields here.

Well, this needs illustration. Figure 6.2 (page 146) shows a couple of class
declarations (admittedly contrived) for a class and its superclass, plus an assortment
of variables and initializations. The diagram below that shows the state of local
variables and objects that results. Finally, the table at the end shows the result of a
number of possible field accesses. Some of these results may look counter-intuitive.
For example, since aP actually points to a Q object—the same one as aQ points to,
in fact—why don’t aP.x and aQ.x fetch the same value? The answer to this and
all such questions is actually easier than one might suppose from trying simply to
memorize the table: the legality of all field accesses, and the identity of fields they
actually fetch, depend entirely on the static type of whatever they are selected from
(the thing to the left of the dot). It is the fact that aP is declared to be of type P

that determines what field aP.x references. The rule is simple, but the results can
be confusing, which is why it is generally considered bad practice to use the same
name for a field in a class as one that is defined in its superclass.
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class P {

int x;

P next;

static int

y = 10, z = 11;

P (int x0, P next0) {

x = x0; next = next0;

}

}

class Q extends P {

int w, x;

static int

y = 12, v = 13;

Q (int x0, P next0,

int x1) {

super (x0, next0);

x = x1; w = 0;

}

}

Q aQ = new Q (1, null, 2);

P aP = aQ;

Q bQ = new Q (3, aQ, 4);

P cP = new P (5, bQ);

5 3 0 4 1 0 210P.y:

11P.z:

12Q.y:

13Q.v:

cP: bQ: aQ: aP:

Values of E.F
E .x .y .z .v .w

aQ 2 12 11 13 0
aP 1 10 11 ? ?
bQ 4 12 11 13 0
cP 5 10 11 ? ?
P ? 10 11 ? ?
Q ? 12 11 13 0
cP.next 3 10 11 ? ?
cP.next.next 1 10 11 ? ?
bQ.next 1 10 11 ? ?
((Q) bQ.next) 2 12 11 13 0
((P) bQ) 3 10 11 ? ?
aQ.next NP 10 11 ? ?

Figure 6.2: Example of field extraction. The program text at the top sets up the
local variables and objects shown in the diagram below it. Each P object contains
an x and next field, each Q object contains both of these, plus (to their right in the
diagram) a w field followed by another x field. The table shows the values of various
field expressions. A ‘?’ indicated an illegal expression (rejected by the compiler) and
a ‘NP’ indicates an expression that will raise a NullPointerException on execution.
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6.6.3 Testing types

The instanceof operator tests the dynamic type of a reference value.

Syntax.

BinaryExpression: Operand instanceof Type

Semantics. A variable that has a reference type may in general point to any of an
arbitrary number of different types of object—anything that extends or implements
the type of the variable. The instanceof operator tests to see whether a certain
value actually is pointing to a particular kind of object. Suppose that we have the
following declarations

class A { ... }

interface I { ... }

class B extends A { ... }

class C extends A implements I { ... }

and variables

A x = new B (...);

A y = new C (...);

I z = new C (...);

A q = null;

Then the following table gives the various of v instanceof T for all combinations
of variable v and type T :

T
v A I B C

x true false true false
y true true false true
z true true false true
q false false false false

As you can see, the declared types of the variables is independent of the values
of instanceof. The value null, since it does not point to any object, always gives
false as a result. The type T is required to be a reference type (possibly an array
type, but not a primitive type), and the value of the expression v must also have
a reference type. Furthermore, it is required that it be possible for v to point to
something of type T ; for example, something like "A string" instanceof int[]

would be illegal, since a string cannot possibly be an array.
As a general rule, be suspicious of all uses of instanceof. In the vast majority

of cases, it is not necessary to inquire as to what type of object a variable actually
is pointing to. That is, in good object-oriented programming, you will very seldom
see code like this:

Cross references: Operand 119, Type 76.
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if (x instanceof Type1) {

do the Type1 thing to x;
} else if (x instanceof Type2) {

do the Type2 thing to x;
} ...

Instead, Type1 and Type2 will be both be subclasses of some other class that defines
a method (say doYourThing), overridden by Type1 and Type2, and you will replace
all the code above with just

x.doYourThing(...);

6.6.4 Arrays

An array is a kind of structured container (see §4.1.1). Its inner containers consist
of

• a sequence of simple containers that are indexed by the integers 0–L−1, where
L ≥ 0 is called the length of the array, and

• one constant (final) field named .length, whose value is always L, the number
of elements in the array.

Array allocators create arrays, and array indexing accesses the indexed elements.

Array Indexing

Array accesses denote the individual elements of an array5:

Syntax.

ArrayAccess: OtherPrimary [ Expression ]

Semantics. If the static type of an expression A is an array type, T[], and
expression E is an int, char, short, or byte, then A[E] is the element of the
array indexed by value E, and its static type is T . If A is null, the program throws
NullPointerException. If either E<0 or E>=A.length are true, the program
throws ArrayIndexOutOfBoundsException.

As usual, because the legality rules rely on static types, the following code is
illegal, even though A does indeed reference an array:

Object A = new int[5];

A[3] = 2;

5The syntax here is a little picky for a reason. An OtherPrimary is a type of simple Expression

that does not include new operators (unless parenthesized). This is necessary because otherwise,
new int[4][3] is ambiguous: does it mean the last element (#3) of a four-element array just
created, or does it mean we are creating an array four arrays of three elements each?
Cross references: Expression 119, OtherPrimary 120.
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Arrays are Objects, but not all Objects are arrays, so the compiler will reject the
above, insisting instead that you write

Object A = new int[5];

((int[]) A)[3] = 2;

—that is, that you cast A back to an array type (see §6.2.1 concerning casts).

Example: Sum of elements.

/** The sum of the elements of A */

int sum(int[] A)

{

int sum;

sum = 0;

for (int i = 0; i < A.length; i += 1)

sum += A[i];

return sum;

}

Example: Circular shift.

/** For each k, move the value initially in A[k] to

* A[(k+1) % A.length]---that is shift all elements

* "to the right" (toward higher indices), moving

* the last to the front. */

void shiftRight(int[] A)

{

if (A.length == 0)

return;

int tmp = A[A.length-1];

for (int i = A.length-2; i >= 0; i -= 1) // Why backwards?

A[i+1] = A[i];

A[0] = tmp;

}

Multi-dimensional arrays. A multi-dimensional Java array is represented as an
array of arrays (of arrays. . . ). The syntax accordingly allows you to have multiple
indices. For example, if A is an array of arrays of doubles (type double[][]), then
the notation A[i][j] would first get you element i of A (which would be an array
of type double[]), and then from that array would select element j (a double). If
you choose to think of the arrays in A as rows of a matrix, then A[i][j] would be
at column j and row i.

For example, to get a function that fills an arbitrary two-dimensional array of
doubles with a value x, we can write
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static void fill (double[][] A, double x) {

for (int i = 0; i < A.length; i += 1)

for (int j = 0; j < A[i].length; j += 1)

A[i][j] = x;

}

Creating arrays

Syntax.

ArrayAllocator:
new Type DimExpr+ Dim∗

new Type Dim+ ArrayInitializer
Dim: [ ]

DimExpr: [ Expression ]

ArrayInitializer: { ElementInitializer∗, ,opt }

ElementInitializer: Expression | ArrayInitializer

The odd little optional comma at the end of a list of ElementInitializers is just a
convenience that makes it marginally easier to generate lists of items to paste into
one’s program.

Semantics. Array types are reference types; a declaration such as

int[] A;

means “at any time, A either contains null or a pointer to an array object.” With
this particular declaration, A is initially null, as for any variable or field having a
reference type. This fact is a rich source of errors for beginning Java programmers:

WARNING: Declaring an array variable does not put a useful value in it.

To create an array, we use an array allocator, as in these examples:

int[] A = new int[4]; // A points to array of 4 0s.

int[] B; // Same thing, but in two steps.

B = new int[4];

int[] C = new int[] { 1, 2, 3, 4 }

// Array with explicit initial values.

int[] D = { 1, 2, 3, 4 } // Shorthand for the above

sum (new int[] { 1, 2, 3, 4 }) // Pass array value

The shorthand form used in the declaration of D is valid only in variable (and field)
initializations.

The type of value returned by the array allocator

new T [E1] · · · [Em] [ ] · · · [ ]
︸ ︷︷ ︸

n

Cross references: Expression 119, Type 76.
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is T [ ] · · · [ ]
︸ ︷︷ ︸

m+n

. None of the values of the Ei may be negative, or the allocator throws

a NegativeArraySizeException If the resulting array is called Z, then it has
the property that Z[i1][i2] · · · [im] is either a T (if n = 0) or a null pointer to an
n-dimensional array of T s.

To understand this better, consider the sequence of examples shown in Figure 6.3
(page 152) This shows the effect of various initializations of a two-dimensional array.
Example 1 shows the result of no initialization: no array is created, and any attempt
to reference rect[i] throws an exception. Example 2 creates an array to hold
pointers to rows of integers, but the rows themselves are missing: rect[i] is OK,
but rect[i][j] throws an exception. Example 3 finally fills everything in, creating
four objects that hold a 3×4 array. Example 4 shows that the rows are independent:
they need not all have the same length. Example 5 shows that the rows of an array
really are general pointers, and that in particular they need not even point to
different objects. It changes rect[0][1], but since all rows are the same object,
rect[1][1] and rect[1][2] will also be 42.

6.6.5 Strings

The class java.lang.String is one of a handful of library classes specifically men-
tioned in the Java kernel language, where it shows up in the form of string literals
and the built-in + operator on Strings.

Syntax.

StringLiteral: " StringCharacter∗ "

StringCharacter:
Any Unicode character except CR, LF, " or \
EscapeSequence

BinaryExpression: Operand + Operand

An object of class String represents a sequence of characters (chars), and is written
with the familiar double-quote syntax:

"" // The null string

"Hello, world!"

"δ" // If supported by your compiler.

Null strings are not null values! They are simply sequences with zero characters in
them.

Just as in character literals, escape sequences allow you to insert any character
into a string:

"Name\tQuantity\tPrice" // Horizontal tabs

"One line.\nAnother line."

// Represents One line.

// Another line.

Cross references: EscapeSequence 128, lhsOperand.
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1. No initialization

int[][] rect;
rect:

2. Initialize one dimension

int[][] rect = new int[3][];
rect:

3. Initialize both dimensions

int[][] rect = new int[3][4];
rect:

0 0 0 0

0 0 0 0

0 0 0 0

4. Triangular array (two ways)

int[][] triang = new int[3][];

for (int i = 0; i < 3; i += 1)

triang[i] = new int[i+1];

/* ---- Another way ---- */

int[][] triang =

{ {0}, {0, 0}, {0,0,0} };

triang:

0

0 0

0 0 0

5. Shared row

int[] row = { 0, 0, 0 };

int[][] rect = { row, row, row }

rect[0][1] = 42;

rect:

0 42 0

Figure 6.3: Illustrations of array initialization.
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// on UNIX systems.

"2\u03b4 + \u03a8" // 2δ +Ψ

The second example shows one way to insert a line break into a string, but it is
not officially portable, since Windows systems, for example, use a different sequence
("\r\n"). To really do it right, you should use System.getProperty("line.separator")
and concatenation, as in

"One line." + System.getProperty("line.separator") + "Another line."

It is useful to break long strings into pieces for readability. You are not allowed
to put bare line breaks into strings, but you can use two literals and the string-
concatenation operator (+) to get the desired effect:

System.out.println ("Error: too many pending requests. " +

"Please try again later.");

produces the message

Error: too many pending requests. Please try again later.

If S0 and S1 are String-valued expressions, X is any expression (type byte, int,
short, char, long, float, double, or boolean) whose static type is not String,
and Y is any expression6,

Expression Is short for

S0 + S1 => S0.concat(S1)

S0 + X => S0.concat(String.valueOf(X))

X + S1 => String.valueOf(X).concat(S1)

S0 += Y => S0 = S0 + Y ;

In the last line, as with other instances of the += operator, S0 is evaluated only once
(see §6.7).

The methods concat and valueOf are defined in §9.2. The concat method con-
catenates strings, and the valueOf methods produce printable external representa-
tions of their arguments—for example, String.valueOf(42) is "42". The effect of
all this is to give you a convenient way to create messages and other strings. For
example, to have your program print a double value in a variable x in the format
x = -1.7, you can write

System.out.println ("x = " + x);

The effect of valueOf on a reference value is to return either the string "null" (for
the null value), or to return the result of calling the toString() method on that
value. Since you can override this method for classes you define, you can arrange
that string concatenation produces any desired representation for them. There is
an example in Figure 1.3.

6I am practicing some revisionism here. In actual fact, the implementations of these operations
use the class StringBuilder, described in §9.3. However, the effect is the same, which is all that
counts.
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6.7 Assignment, Increment, and Decrement Operators

The core Java language provides only two ways to modify a container: through the
assignment operators or the increment and decrement operators.

Syntax.

Assignment: LeftHandSide AssignmentOperator Expression
LeftHandSide: Name | FieldAccess | ArrayAccess
AssignmentOperator:

= | *= | /= | %= | += | -=

<<= | >>= | >>>= | &= | ^= | |=

UnaryExpression: IncrDecr Operand
PostfixExpression: PostfixExpression IncrDecr
IncrDecr: ++ | --

The assignment operators are all right associative, so that, for example,

x = y += z; is equivalent to x = (y += z);

Semantics. The simple assignment operator, =, changes the contents of its left
operand, which must denote a simple container (a local variable, field, array element,
or parameter) to the value yielded by its right operand. It requires that its right
operand be implicitly convertible to the type of the left operand (see §6.2). If the
left-hand side is a local variable or field, it may not be final, unless it is a blank
final, as described in §6.11.2.

The value of the assignment expression is the final value of the left operand.
Together with the right-associativity of assignment, this means that, for example,

x = y = z;

assigns the value of z to both x and y.
There is a special shorthand rule to avoid having to write some annoying casts.

Consider

byte x;

x = 42;

Now the value 42 certainly fits in a byte (values −128 to 127), but the static type
of 42 is int, and type int is not implicitly convertible to type byte, since not all
ints fit into a byte. To avoid having to write

x = (byte) 42;

when you can see perfectly well that 42 is a possible byte value, Java has the
rule that in an assignment statement, if the right-hand side is a numeric constant
expression (see §6.9) whose (known) value fits in the type of the left operand, then

Cross references: ArrayAccess 148, Expression 119, FieldAccess 144, Name 82, Operand 119,
PostfixExpression 120, UnaryExpression 120.
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no explicit cast is needed. This exception applies only to assignments; if method
f takes an argument of type byte, then f(42) is still illegal, and you must write
f((byte) 42) instead. It also applies only to constant expressions; it would be
illegal to write

int a = 42;

x = a; // Illegal

The other assignment operators combine a binary operation with an assignment.
The expression

L ⊕= E

—where ⊕= is one of the valid assignment operators listed above, L is any left-hand
side, and E is any expression—is approximately equivalent to

L = (T) (L ⊕ E)

where T is the type of L. Thus,

x += 1

increments x by 1, and the value of the entire expression is the resulting value of x.
The left-hand side must not be final for these operators.

I said “approximately equivalent” because the container denoted by L is deter-
mined exactly once. This proviso is the sort of obscure pathology that delights
language designers. That is, to see why it makes a difference, you have to look at
programs that no sane programmer would write. For example,

A[i += 1] += 1;

If initially, i is 0, then the effect of this statement in Java is to increment i to 1,
and then increment A[1] by 1. If we instead wrote,

A[i += 1] = A[i += 1] + 1;

the effect would be to increment i twice, and then set A[1] to A[2]+17.
Historically, C and C++ provided operators specifically tailored for incrementing

and decrementing by 1, and Java has retained them:

++L is equivalent to L += 1

--L is equivalent to L -= 1

where L is a left-hand side as before. The corresponding postfix operators, L++ and
L--, affect L in the same way, but yield as their values the initial value of L (before
being incremented or decremented). The operand of ++ and -- may not be final.

For obtuse aesthetic reasons, your author never uses these operators (+= and -=

work just as well and are more general). In most Java code, you will see them used
in for loops. The post-increment and decrement operators are sometimes used to
write obscure but concise statements such as

7Java actually defines the outcome here, since it specifies left-to-right evaluation of operands. In
C and C++, this statement actually produces unspecified results, either modifying A[1] or A[2],
depending on the order in which the two assignments to i happen.
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return myStack[sp--]; // Fetch myStack[sp], then decrement

// sp just before returning.

6.8 Method Calls

Method calls encompass what are called function, subprogram, or procedure calls in
many other languages, as well as indirect calls: calls in which the function actually
called is computed on the basis of program data. You should read this section in
conjunction with §5.8, which describes the declaration of methods.

Syntax.

Call: MethodSelectoropt MethodName Actuals
MethodSelector:

ClassType .

Expression .

super .

Actuals: ( Expression∗, )

MethodName: SimpleName

Semantics. The effect of a method call is first to determine the method referred
to by the MethodName, then to compute the values of the Actuals (short for actual
parameters), to create new local variables, one for each formal parameter defined
in the declaration of the method, containing copies of the values of the actual
parameters (exactly as if by assignment), and finally to execute the body of the
selected method.

The MethodSelector defines the set of possible method declarations to choose
from. If it contains a ClassType, then the candidate methods are those defined
in (or inherited into) that class. Only static methods may be called this way. If
the MethodSelector contains an Expression, then the candidate methods are those
defined in (or inherited into) the class or interface that is the static type of the
expression. Either static or non-static (instance) methods may be called this way.
An omitted MethodSelector is equivalent to ‘this.’ (see §6.8.2, below). Finally, if
the MethodSelector contains super, then the candidate methods are those defined
in (or inherited into) the superclass of the class that contains the call.

The method actually selected from this candidate set is one with the same
MethodName as the call. Fields, local variables, types, and statement labels with
the same name as the called method are ignored: you can have a field named foo

and a function named foo in the same class without confusion, since the syntax for
referring to them is different.

When two or more candidates have the same name (when the method name is
overloaded), we choose the one declared with the same number of parameters as
there are actual parameters and whose formal parameters’ types best match the
static types of the actual parameters. That informal description will serve for most

Cross references: ClassType 76, Expression 119, SimpleName 82.
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purposes; see §5.8.3 for details. We call the process of selecting a method described
there static method resolution. For instance methods, there is a further step,
described in §6.8.2.

6.8.1 Static method calls

For a static method, once the method is selected, the actual parameters are evalu-
ated. Consider a call

E.f (E1, . . . , En)

and suppose that the declaration of the selected method looks like this:

static T f (T1 x1, . . . , Tn xn) {

BODY

}

When the method call is used as a statement (that is, ignoring any value it might
return), the effect is essentially as if the call were replaced by

RETURN:

{

T1 x1 = v1;
...

Tn xn = vn;
BODY’

}

where the vi are the values computed for the actual parameters, Ei, and BODY’

is the same as BODY, except that any return statements (§7.5.3) are replaced by
break RETURN (I am using RETURN to stand for some label that isn’t used anywhere
else).

The formal parameters of the method, in other words, act like local variables
that are initialized to the actual parameters’ values. Changing one of these formal
parameters in BODY has no effect on the value of the actual parameter. For example,
if I define

static void assign (int x) {

x = 42;

}

and call assign(y), the value of y will be unaffected. We say that all parameters
in Java are g passed by value8.

8A number of authors claim that in Java, primitive types are passed by value and reference
types are “passed by reference.” Avoid this inexcusably sloppy, indeed incorrect, terminology. The
actual parameter y in this call of assign would not be modified even if y had a reference type.
True, the object that y points to can be changed, but in Java it is impossible to pass pointed-to
objects, only the pointers to them. The term pass by reference refers to languages, like Pascal or
(arguably) C++, where one can define functions like assign in which assignment to the formal x
does modify the value of actual parameter y.



158 CHAPTER 6. THE EXPRESSION LANGUAGE

If the call is used as an expression (that is, used for its value), then the static type
of the value is the return type declared for the method (the type T in the sample
declaration above). In this case, the method call is evaluated as just described,
except that the value of the method call is that computed in the return statement
that terminates the call (§7.5.3).

6.8.2 Instance Method Calls

Calling an instance method differs from calling static method in two major ways.
Otherwise, the treatment of parameters, evaluation of the body, and handling of
the return value is the same.

The value ‘this’

First, there is an extra, implicit formal parameter, called this.

Syntax

This:
this
ClassType . this

Semantics. The first, unqualified form is like a final parameter; you may not
assign to it. The actual parameter value passed to parameter this is that of the
expression in the MethodSelector , (which is the current method’s this if the Meth-
odSelector is omitted or is super). Suppose we have defined

class A {

int y = 0;

void f (int x) {

this.y = x;

y += 1; // Same as this.y += 1;

g(3); // Same as this.g(3)

}

void g (int z) {

y += z; // Same as this.y += z

}

static void h () {

// this.y = 3; // ILLEGAL

// y = 3; // Equivalent to this.y = 3, so ILLEGAL

}

}

and consider

Cross references: ClassType 76.
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A k = new A();

k.f (3)

During the call to f, the value of this is the same pointer as is contained in k, as
is also the case during the call to g within the body of f, so that when the call is
finished, k.y is 7.

Expressions within the text of an inner class, are allowed to look at the this value
from enclosing classes. The second, qualified form of this allows you to reference
these values by specifying which enclosing class you want. See §5.7 for discussion
and an example.

Whenever an instance variable or instance method is referred with a “bare”
identifier, the appropriate prefix “this.” prefix is implicitly prepended.

The keyword this is meaningless inside static methods. Therefore, any attempt
to refer to the instance variable y of this in static method h would be illegal, as
shown.

Dispatching instance methods

The second difference between instance methods and static methods is in the actual
selection of a method to call. Static method selection gives us one candidate method
declaration. In the case of instance methods, this method is just one member of
a dynamic method set consisting of that method declaration plus all method dec-
larations that override the declaration (in subclasses of the class that contains the
method declaration). All the methods in this set have the same name, parameters,
and return type, so any of them could legally be called. There are more details
about overriding in §5.8.4.

The actual method that gets called is usually selected from the dynamic method
set according to the dynamic type of the MethodSelector expression (that is, the
dynamic type—the type of the actual pointed-to object—of the value that is passed
as the value of this). Again, see §5.8.4 for an example. The method call will
throw a NullPointerException exception if there is no object—that is, if the
MethodSelector is a null value.

The one exception to this rule is that super.f(...), when it appears in a
method in class C selects the method to call statically, according to the same rules
as P.f(...), where P is the superclass of C. Otherwise, the value of super is
essentially this, which gets passed as the implicit parameter. This feature is useful
when you want to override a method in class C so as to augment the effect of the
method in P rather than to replace it entirely. To extend the example in 6.8.2, if
we define

class B extends A {

int q;

void f (int x) {

q = x;

super.f(x);

}
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}

the effect is first to save the value of x in instance variable q and then to increment
y as does A.f.

6.9 Constant Expressions

Constant expressions are roughly expressions whose values may be determined in-
dependently of any execution of a program. Hence, a compiler can “know” what
their values will be, which is necessary for checking certain correctness properties
of programs, such as whether the labels of switch statements (§7.2) overlap.

Syntax.

ConstantExpression: Operand

Semantics. A ConstantExpression is an operand that contains only the following
items:

• Literals.

• Casts to primitive types or to type String.

• The unary operators

+ - ! ~

• The binary operators

+ - * / % & ^ | >> << >>>

< > <= >= == != && || ?:

• Names of final variables (local variables and fields) whose initializers are them-
selves constant expressions.

• Enumerals (see §5.6).

6.10 Reflection

Classes define sets of values. We say that 3, for example, is an int; we can store it
in variables, pass it as a parameter to a function, or return it from a function. On
the other hand, you can’t do any of these things to int itself, which is a type. For
example,

void declareSomething (Type typ) {

typ y;

}

Cross references: Operand 119.
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and

declareSomething (int);

are not legal Java. Similarly, these sorts of statements are illegal for methods and
packages. We say that types (classes and interfaces), packages, and methods are not
first-class values. There are languages, such as Lisp or Python, in which these things
are first-class values, but types, in particular, are seldom first-class in “production”
programming languages, for various reasons.

Java does, however, have a facility that comes close, known generally as re-
flection. In programming languages, “reflection” refers to any feature that mirrors
entities of a program as values. In Java, values of the class java.lang.Class stand
for (“reflect”) Java types, but, like other Java values, may be stored, passed as pa-
rameters, and so forth. Similarly, there are classes for other kinds of Java entities:
java.lang.reflect.Method values reflect methods; java.lang.reflect.Field

values reflect fields; etc. The syntax required to use these reflective values is much
clumsier than the corresponding syntax for calling methods or creating instances
of types, but one can get many of the same effects. While reflection types are not
much used in ordinary programming, they can be important for achieving certain
“special effects.” Here, I’ll consider just a few of the features you can obtain using
values of type Class.

Syntax.

Operand: Type .class

For every Java type, T , there is a value of type java.lang.Class, which stands
for T and is otherwise a completely normal Java value. The syntax above provides
for literals of type Class. In addition, if x contains a reference value other than
null, the method call x.getClass (), defined on all Objects, will return the Class
representing its dynamic type.

Reflection, unfortunately, is never simple in a language like Java, because of the
need to give everything a static type. The class Class, in particular, is parameter-
ized (see Chapter 10): The type of T.class is actually Class<T>. For now, I’ll try
to suppress this detail as much as possible, but some of the incantations you see
below are necessitated by it.

6.10.1 Type java.lang.Class

Given a Class value, you can query its methods, fields, containing package, and
many other things. For our purposes, however, we’re going to consider just a few
operations that Class provides—just enough to see how it might be useful.

The newInstance method. If cls has type Class<C>, so that cls represents
the type C, then then cls.newInstance () returns a new value of type C as if you
had written new C(). To actually use it, you must be ready for some exceptional
conditions (see Chapter 8). Here’s an example:

Cross references: Type 76.
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C newObject;

try {

newObject = cls.newInstance ();

} catch (IllegalAccessException e) {

newObject = null;

} catch (InstantiationException e) {

newObject = null;

}

The two exceptions here occur if there is no argumentless constructor for the type,
or there is a constructor but you are not supposed to be able to use it from this
point in the program (it’s not public).

Well, this example certainly raises an obvious question: why go to this much
trouble, when I could much more easily have written

newObject = new C (); ?

That works if you know the type C when you write this code, but what if you
don’t? Read on.

The forName method. The static method Class.forName allows you to find a
class given its name, even if that class appears nowhere in your program.

Suppose that you are writing a program that, like a typical browser these days,
allows users to plug in executable program components as the program executes—
components created by some third party, say, to extend the powers of your program,
and that perhaps did not exist when your wrote it. A user would tell your program
about such a component by typing its name (a String), after which your program
must somehow add this component to the running program.

Let’s further suppose that these components take the form of a Java class.
Typically in such situations, you’ll have some standard requirements on this package
that allow your program to know how to talk to it. One way to impose such
requirements is for you to provide a standard interface that the component is to
implement:

public interface LoadableModule {

/** Perform any necessary initializations, using ARGUMENTS in a

* module-dependent way. */

void initialize (String[] arguments);

/** Execute whatever new command this module implements, using

* ARGUMENTS as the operands. */

void execute (String[] arguments);

/** Shut down this module. */

void close ();

}

Somewhere in your program, you will now need to accept a command that loads
modules that conform to this interface. Let’s further assume that you want to
restrict these modules to like in a particular package.
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/** Create a module named NAME, which must be the name of a class

* in package myprogram.modules. */

LoadableModule loadModule (String name) {

try {

Class<?> cls = Class.forName ("myprogram.modules." + name);

return (LoadableModule) cls.newInstance ();

} catch (ClassNotFoundException e) {

throw new IllegalArgumentException ("bad module name: " + name);

} catch (IllegalAccessException e) {

throw new IllegalArgumentException ("cannot access module " + name);

} catch (InstantiationException e) {

throw new IllegalArgumentException ("cannot load module " + name);

}

}

This is an interesting example of object-oriented programming, by the way. We
cannot know what modules a user might define, but we can provide a common
interface that allows our program to interact with these modules with no knowledge
of their internals.

6.11 Definite Assignment and Related Obscure Details

Although every container in Java is guaranteed to be initialized to some well-defined
value, the language places certain additional requirements, just, I guess, to be on the
safe side. Local variables are supposed to be definitely assigned before their values
are used. In the Java specification, there is an entire chapter devoted to what this
means. Frankly, I don’t think the precise details matter that much, so I condense
the discussion enormously. Intuitively, the basic idea is that it is supposed to be
“obvious” that every local variable is assigned to before its value is first used. The
test is applied on each method individually (including implicit methods concocted
by the compiler for static initializers).

We consider the body of a method and imagine that we change the meaning
of all the conditional and looping statements (if, while, do, for, and switch) so
that they are nondeterministic: on any given execution, an if might go either way,
regardless of its condition; a while or for might loop or not; and a switch might
take any branch, regardless of the value of its expression. In addition, imagine
that any catch clause might get executed at any point in a try statement (see
Chapter 8). Now, if it is possible that execution of the method under these rules
could ever fetch the value of a local variable of the method before it is first assigned
to, then the method fails the definite assignment test.

For example, consider

int f (int x) {

int y;

if (x > 0) {

y = 3;
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} else {

y = 4;

}

return y;

}

In this case, no matter which branch of the if statement is taken, y is assigned to
before the return, so this passes the test.

On the other hand, consider

int f (int x) {

int y;

if (x > 0) {

y = 3;

}

if (x <= 0) {

y = 4;

}

return y;

}

This fails the test, even though you can see that y must get assigned to. Since we
imagine the if statements choosing nondeterministically, ignoring their conditional
tests, the definite assignment test requires that y get assigned even if neither if
statement executes its assignment, and, of course, y does not get assigned under
those conditions.

6.11.1 Assignments to fields

Fields of records that are initialized with VarInit clauses, as in

public int x = 14;

are also not supposed to be accessed before the assignment takes place (other fields
are under no such restriction, and are initialized with the usual default values of
0, false, or null). This rule can be violated by various pathological programs,
generally highly contrived, such as

class Weird {

int x = y;

int y = 42;

}

It turns out, however, that in the general case, it is sometimes impossible to detect
this condition at the time a program is compiled. It’s still wrong, nevertheless.
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6.11.2 Blank final variables

It is possible to define a field or local variable to be final even though there is
no initializer on the declaration. We call these blank finals. They are useful when
the computation needed to initialize a variable is awkward to write as a simple
expression.

Each blank final instance variable must be definitely assigned before the end
of every constructor that starts with an explicit or implicit call on the superclass’s
constructor (see §5.9). Every blank class variable must be definitely assigned before
the end of the anonymous static initialization method (see §5.10). No final field or
local variable may be assigned more than once. For example, the following class
correctly initializes its blank fields:

class Blanks {

static final int x, y;

final int q;

int r;

static {

x = 42;

y = x * SomeClass.f ();

}

Blanks (int z) {

q = z;

}

Blanks () {

q = 0;

}

Blanks (int z, int w) {

this (z);

r = w;

}

}
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Chapter 7

Statements

In the terminology of programming languages, statements are constructs that denote
actions (as opposed to expressions, which denote values, and declarations, which
define things). A programming language emphasizing statements is known as an
imperative language, of which Java is an example. As usual, these terms are not
as crisply distinguished as I make them appear. In Java, as we’ll see, expressions
and declarations can denote actions (and act as statements). Nevertheless, the
terminology is traditional and often useful.

We can divide statements into two categories: simple statements and control
structures. A control structure is a part of a programming language that is con-
cerned with specifying which statements or expressions in a program get executed
and when. Ultimately, a program consists of primitive operations (assignments,
arithmetic operations, array indexing, accessing fields of objects, creating objects)
contained in simple statements and expressions whose execution is orchestrated by
control structures. In this chapter, we’ll deal with most control structures, but
we’ll leave the exception handling to Chapter 8 and concurrent control (threads) to
Chapter 11.

As a sort of outline of the rest of this chapter, here is the top-level syntax of
Java statements:

Statement: Block
EmptyStatement
LabeledStatement
StatementExpression ;

SelectionStatement
IterationStatement
JumpStatement
TryStatement
SynchronizeStatement

Cross references: Block 168, EmptyStatement 168, LabeledStatement 180, StatementExpression

120, SelectionStatement 169, IterationStatement 174, JumpStatement 180, TryStatement 185, Syn-
chronizeStatement 247.

167
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7.1 Sequencing, Blocks, and Empty Statements

As you’d expect, writing one statement after another generally means “do the first
statement, then do the second.” This control structure (called sequencing in state-
ments) is the simplest means of gluing together actions to make more complex
actions. In Java, sequences of statements always appear in a syntactic structure
called a block, which serves to group a sequence of statements into a single state-
ment. This turns out to be extremely useful within other control structures (see
§7.2 for the first of many examples).

Syntax

Block: { BlockStatement∗ }

BlockStatement:
Statement
LocalDeclarationStatement
LocalClassDeclaration

EmptyStatement: ;

If you look carefully throughout the chapter at the syntax for other statements
(starting from the syntactic outline at the beginning of the chapter), you’ll find
that they either end with a semicolon, or with another statement. Blocks and class
declarations end in “right curly braces” (‘}’). It follows that all statements end in
either one or the other, but not both, a useful property to remember.

Semantics. Executing a block means executing the sequence of statements and
declarations within it in order (except as indicated by certain other control struc-
tures; see §8 and §7.5).

As indicated by the Kleene star in the syntax, a block contains zero or more
statements. A block containing no statements (written ‘{}’) does nothing, as does
the empty statement (which consists only of a semicolon). You may well wonder at
the value of statements that do nothing, but they do occur. Empty blocks, in fact,
are somewhat common: all function definitions must have bodies, and it often nec-
essary to give a temporary or default definition, for which “do nothing” is precisely
the right specification. The empty statement is in Java more “for completeness”
than anything else. One can use it in examples like this:

while (mylist.next ())

;

(meaning “keep calling mylist.next, doing nothing else each time, until it returns
false”). However, the semicolon is so small and easily overlooked that you might
be better off using an empty block instead:

while (mylist.next ())

{ }

Cross references: Statement 167, LocalClassDeclaration 97, LocalDeclarationStatement 85.
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7.2 Conditional Control

The term conditional statement (or to use Java’s terminology, selection statement)
refers generally to anything that selects some (or none) of a collection of possible
statements to execute, based on some computed value.

Syntax.

SelectionStatement:
if ( Expression ) Statement
if ( Expression ) Statement else Statement
switch ( Expression ) { SwitchBlockStatements∗ }

SwitchBlockStatements:
SwitchLabel+ BlockStatement+

SwitchLabel:
case ConstantExpression :

default :

7.2.1 If Statements

An if statement ‘if (C) Strue else Sfalse’ first evaluates its condition (C), which
must yield a boolean value. It then executes the statement Strue if this value is
true, and Sfalse otherwise. A missing else part is equivalent to ‘else ;’ or ‘{}’—
“else do nothing.”

Since you’ll often want to do a sequence of things, not just one, when a certain
condition is true, the fact that blocks (§7.1) are statements comes in quite handy:

if (n == 0) {

System.err.println ("Error: list is empty.");

System.exit (1);

}

Here, the single statement Strue is a block containing two statements.

You’ll often have a situation in which you want to break a problem into mutually
exclusive cases. The if statement’s syntax fits this quite well:

if (x < 0)

System.err.println ("Error: may not be negative.");

else if (x < 10)

handleSmallValue (x); // Values 0 <= x < 10.

else if (x < 200)

handleMediumValue (x); // Values 10 <= x < 200.

else

handleLargeValue (x); // Values x >= 200.

Cross references: Expression 119, ConstantExpression 160, BlockStatement 168, Statement 167.
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It is conventional to use this indentation style for case analyses, even though ev-
erything beginning with the first else is technically part of the first if statement,
everything after the second else is part of both the first and second if statements,
and so forth.

Finally, beware of the subtle ambiguity entailed by the following situation:

if (x > 0)

if (x <= 9)

handleMediumValue (x);

else

handleLargeValue (x);

From the bare syntax for SelectionStatement, you could interpret this statement
either as calling handleLargeValue if x is greater than 9 or if x is less than or
equal to 0. The first interpretation assumes that the else is associated with the
second if and the second interpretation assumes it is associated with the first (and
the “true” branch is just the immediately following if statement without an else
clause). When there is such a choice, Java resolves this ambiguity by associating
such “dangling else” clauses with the nearer if statement. If your intentions are
different, don’t think that indentation will save you, as in:

if (x > 0)

if (x <= 9)

handleMediumValue (x);

else // Oops!

handleLargeValue (x); // Executed if x >= 10.

This means the same as the preceding example, but is indented so as to fool the
reader into thinking otherwise. Instead, use blocks (just as you would use paren-
theses in an expression):

if (x > 0) {

if (x <= 9)

handleMediumValue (x);

} else

handleLargeValue (x); // Executed if x <= 0

7.2.2 Switch Statements

One common form of case analysis compares some value for equality to one of a
fixed set of values, as in this possible excerpt from a simple calculator program:

c = nextInputCharacter ();

if (c == ’q’ || c == ’Q’)

quitCommand ();

else if (c == ’p’ || c == ’=’)

printCommand ();

else if (c == ’+’)
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addCommand ();

else if (c == ’-’)

minusCommand ();

... // and so on

else {

System.err.println ("Invalid command");

clearInputLine ();

}

Java’s switch statement provides is a specialized syntax for this kind of situation.
With it, the above text might be re-written as

switch (nextInputCharacter ()) {

case ’q’: case ’Q’:

quitCommand ();

break;

case ’p’: case ’=’:

printCommand ();

break;

case ’+’:

addCommand ();

break;

case ’-’:

minusCommand ();

break;

...

default:

System.err.println ("Invalid command");

clearInputLine ();

}

The break commands in this context mean “leave the switch statement.” See §7.5
for a fuller description of break.

As you might mostly gather from comparing this switch statement with the
equivalent if statement, the general meaning is this:

1. Evaluate the expression after switch. It must have an integral value (in the
example above, it is presumably a character—type char—which in Java is an
integer.) We’ll call this value X in what follows.

2. Find a switch label (following a case keyword) whose value equals X. Each
switch label must evaluate to an integer (again, in Java character literals
evaluate to integers) and must be a constant.

2a. If there is such a switch label, execute the statements that follow up until
the closing brace of the switch statement, or until otherwise made to
stop (typically by a break statement).
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2b. Otherwise, if there is a default label (there may be at most one) execute
the statements that follow it.

2c. Otherwise, leave the switch statement.

The switch labels can be any constant expressions (see §6.9), not just simple literals.
So, ‘case X+1:’ is entirely legal if X is a constant, although not if it is an ordinary
variable. Because the statements following the cases are BlockStatements, they
may include declarations. However, there are subtle rules about this, so I advise
you to avoid obscurity by wrapping any local declarations you happen to need inside
blocks, as in this example:

switch (msg.type ()) {

...

case CONTROL_MESSAGE: { // Start inner block

String command = msg.extractText (); // Declaration

...

break;

} // End inner block

case DATA_MESSAGE:

...

}

The groups of statements between case labels are known as the branches of the
switch statement. The break statement at the end of each branch is a kind of
Java idiom marking the end of the branch. If you read the description of how
switch statements work closely enough, you can deduce that if you left out a break
statement—accidentally or otherwise—the effect would be to cause execution of one
branch to “fall through” into the next, so that in this example:

switch (x) {

case ’Z’:

saveFile ();

/* FALL THROUGH */

case ’q’:

quit ();

break;

...

}

if x contains the character ‘Z’, then the program calls both saveFile and quit. You
won’t be tempted to do this very often, and if you do (some tastes dictate that you
avoid it), be sure to mark with a comment as shown, so as to avoid puzzling your
reader. Aside from this “breakless” situation, the order of your switch labels and
the placement of the default branch are irrelevant; choose whatever seems clearest.
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7.3 About Statement Format

Now that we’ve seen at least one structured statement (a statement containing
substatements), it’s as good a time as any to take a break to talk about formatting
programs for readability. Java, like most modern languages, gives you a great deal
of leeway as to how to arrange your program on the page. In general, you can
insert extra whitespace (spaces, tabs, line breaks) anywhere. It is traditional to
use this freedom to have layout accentuate your programs’ logical structure. There
is no One True Style for programs that is universally accepted. Nevertheless, it
is important for the benefit of those reading your program (yourself included) to
adopt consistent conventions for indentation and layout.

In this book, we use a variation of what is sometimes called K&R style, after
the authors of The C Programming Language, Brian Kernighan and Dennis Ritchie.
Here are some major points:

1. Within a block, start each statement on a new line.

2. When one line is supposed to be indented relative to the previous line (as
indicated by other rules here), indent by some consistent amount. The original
K&R convention was four spaces, although two or three are also used1.

3. If a statement must continue to a new line, indent the continuation.

4. A block that is part of a larger statement (as for example, an else clause that
consists of a block) normally has its opening left brace at the end of one line
of the larger statement, its block statements indented beginning at the next
line, and its closing brace on a separate line, indented at the same level as the
larger statement:

if (x > y) {

L = y;

U = x;

}

5. If the true branch of an if is a block, place the else for that if (if there is one)
immediately after the closing brace. If the true branch is not a block, put the
else on a separate line, even with the if. Two examples:

if (x > y) { if (x > y)

L = y; M = L+1;

U = x; else

} else { M = U-1;

...

}

1Linus Torvalds (inventor of GNU Linux) recommends eight spaces, partially on the grounds
that he wants to discourage more than one level of statement nesting. However, such research as
has been done on program readability indicates that eight is too much.
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6. Unindent lines containing switch labels to the level of the switch keyword (see
§7.2.2 for examples). The statements between labels are indented as usual.
Likewise, unindent the labels of LabeledStatements (see §7.5).

7.4 Iteration

There are two ways to repeatedly execute a statement: using recursive function
calls, and using iterative control structures. Here we consider the latter.

Syntax

IterationStatement:
while ( Expression ) Statement
do Statement while ( Expression ) ;

for ( ForInit ForCondition ForUpdateopt ) Statement
for ( finalopt Type SimpleName : Expression ) Statement

ForInit:
StatementExpressionsopt ;
LocalDeclarationStatement

ForCondition: Expressionopt ;
ForUpdate: StatementExpressionsopt
StatementExpressions:

StatementExpression
StatementExpression ’,’ StatementExpressions

7.4.1 While Loops

The four compound statements

while (p.next != null) while (i > 0) {

p = p.next; p = p.next;

i -= 0;

}

do {

System.out.println (line); do

line = getNextLine; System.out.println

} while (line != null); (L.next ());

while (L.isMore ());

are loops. In each case, a statement (which can be a block, as illustrated in two of
the examples) is executed alternately with evaluating a condition called the loop-
exit test (an expression that must yield a boolean value). When the loop-exit test
evaluates to false, the loop terminates. The difference between the two forms is

Cross references: Expression 119, StatementExpression 120, LocalDeclarationStatement 85,
Statement 167.
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that the while loop starts by first checking its condition, whereas do· · ·while first
executes its statement before checking the condition for the first time. Thus, the
statement in the do· · ·while is executed at least once. You will probably find that
you don’t use this second form very often. Although the choice of where to put
the loop-exit test is limited to before and after the statement in these forms, the
break and continue statements provide ways to terminate the loop or the current
iteration (i.e., execution of the loop statement) at any time within the statement.
Thus we have the common “loop-and-a-half” idiom:

while (true) { // Loop "forever"

c = src.read ();

if (c == ’\n’ || c == -1)

break; // Stop at end of line or file

line += c; // Else add to end of line.

}

See §7.5 for more details and examples.

7.4.2 Traditional For Loops

One of the most common kinds of loop executes a statement repeatedly while also
assigning some regular sequence of values to a control variable used inside the loop.
For example, Pascal has a way to say “execute statement S repeatedly, first with
variable I equal to 1, then 2, then 3, up to N .” The C language has a generalization
of the idea, inherited by C++ and Java and used in numerous scripting languages.
It provides what programming-language types call syntactic sugar for (that is, a
convenient way to write) an equivalent while loop.

The general idea is that the loop

for (Initial; Test; Update)
Statement

is almost equivalent to the block

{

Initial;
while (Test) {

Statement
Update;

}

}

(We’ll come to the “almost” a bit later.) If you look at the official syntax at the
beginning of §7.4, you’ll see that Test is optional; an omitted Test is equivalent to
true.

Stated baldly as this equivalence, the meaning of for may not be apparent, so
let’s look at examples. Consider adding all integers between 1 and N . Here it is in
for-loop form next to the equivalent while-loop form:
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int i, S; int i, S;

S = 0; S = 0;

for (i = 1; i <= N; i += 1) {

S += i; i = 1;

while (i <= N) {

S += i;

i += 1;

}

}

You can read the for loop as “Starting with i set to 1, repeatedly add i to S and
increment i by 1 as long as i does not exceed N.”

I put the equivalent while loop in a block in order to explain what happens when
you exercise the option given by the syntax to have the initialization (ForInit) clause
be a declaration. In the example above, we use i only inside the for loop and have
no need for its value afterwards. In such cases, it is good practice to explicitly limit
the scope of i by writing the loop as follows (again, the translated (or “unsugared”)
form is on the right.

int S; int S;

S = 0; S = 0;

for (int i = 1; i <= N; i += 1) {

S += i; int i = 1;

while (i <= N) {

S += i;

i += 1;

}

}

The variable i is defined only within the for loop.
The syntax for ForInit indicates that it can contain a comma-separated list of

StatementExpressions (to be executed in the order written). Also, if you look at
the syntax of LocalDeclarationStatement , you will find that it provides for declaring
and initializing a list of variables. We could write our summation loop in either of
the following two ways:

int S, i;

for (i = 1, S = 0; i <= N; i += 1)

S += i;

for (int i = 1, S = 0; i <= N; i += 1)

S += i;

Indeed, the ForUpdate may also be a list, which allows us to write

for (int i = 1, S = 0; i <= N; S += i, i += 1) { }

But you may find, as I often do, that this kind of for loop looks a bit strange, and
the alternative way of writing the empty statement,
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for (int i = 1, S = 0; i <= N; S += i, i += 1)

;

is even more unidiomatic (and consider what happens if you forget the semicolon!).
You may have noticed that the last three loops above have another problem.

Since each declares S to be local to the for loop, it is not available outside the loop,
so these are not likely to be useful loops as they stand. The Java syntax does not
provide a way to both declare i and to initialize S without declaring it, nor does it
provide a way to declare multiple variables with differing types (as when we want
S to be of type double). For these cases, you must use additional declarations or
statements outside the loop, as illustrated in several of the examples above.

The examples so far have been for loops that work on integer quantities, but
there is no restriction on the types of quantity that you can use. For example, to
traverse a linked list of integers, (let’s call it aList), printing all its elements, one
might use the following:

for (IntList L = aList; L != null; L = L.next)

System.out.println (L.head);

As another example, the standard Java library defines the interface Iterator

in package java.util, which is intended to be a common interface for all kinds
of “things that traverse a data structure.” An Iterator has operations next and
hasNext, intended to be used like this:

import java.util.Iterator;

...

for (Iterator<?> L = aCollection.iterator (); L.hasNext ();) {

System.out.println (L.next ());

That is, next is presumably defined to yield “the next item” in some collection
of objects, and hasNext tells whether there is a next item. The operations of
moving on to the next item and of then yielding its value are combined in the next
function, so there is an empty ForUpdate part. The Iterator L is a sort of “moving
finger” pointing into aCollection. (We’ll get to the meaning of the <?> notation
in Chapter 10. For now, just think of it as meaning that L iterates of collections of
some kind of Object, and it doesn’t happen to be important which in this particular
loop.)

As this last example illustrates, the syntax allows any of the three parts of the
for loop to be empty. So, for example, the loop

for (; i < N; i += 1)

...

starts with i equal to whatever the previous statements had set it to (such loops,
however, might be clearer as while loops; it’s a matter of taste). An empty For-
Condition means “true,” so one idiom that you’ll sometimes see in place of “while
true” is

for (;;) { ... }
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7.4.3 For Loops for Collections and Arrays

Perhaps the most common use of for loops is in sequencing through the elements of
some data structure. For example, to add all the elements of an array, A, one might
write

double sum;

sum = 0.0;

for (int i = 0; i < A.length; i += 1)

sum += A[i];

On the other hand, to add all the elements of a standard Java Collection, one
might write (following the example in §7.4.2):

import java.util.Collection;

import java.util.Iterator;

...

static double sum (Collection<Double> aCollection) {

double sum;

sum = 0.0

for (Iterator<Double> i = aCollection.iterator (); i.hasNext (); )

sum += i.next ();

return sum;

}

So even though arrays and Collections are both “a bunch of things,” there are
considerably different ways of accessing them.

Along with its other features, Java 2, version 1.5 introduced a new kind of for
loop specfically for the purpose of iterating over collections of values. The statement

for (T x : E)
S;

converts to one of two different loops, depending on whether the value of expression
E is an array type or some other kind of object. For an array, we get:

{

// _E0_ and _I_ are names that don’t appear in elsewhere in the program.

C[] _E0_ = E; // Assuming E is an array of C.

for (int _I_ = 0; _I_ < _E0_.length; _I_ += 1) {

T x = _E0_[_I_];

S;
}

}

so that we can replace the first loop with

for (double x : A)

sum += x;
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For other kinds of object, we get:

// Assume that E contains objects of type C.

for (Iterator<C> _I_ = E.iterator (); _I_.hasNext (); ) {

T x = _I_.next ();

S;
}

so that our summation method now looks like this:

static double sum (Collection<Double> aCollection) {

double sum;

sum = 0.0

for (Double x : aCollection)

sum += x;

return sum;

}

—essentially the same loop as for the array.

To qualify as an appropriate type for this loop construct, the type of the expres-
sion E must either be an array type or must implement the Java library interface
type Iterable, which is defined like this:

package java.util;

public class Iterable<T> {

Iterator<T> iterator ();

}

No surprises here, since the equivalent loop assumes that there is an iterator

method defined and that it returns an Iterator.

7.5 Jump Statements and Labels

Numerous programming languages provide an extremely flexible control statement
(known generically as the goto, after the common keyword) that allowed a program
to jump from one statement to any other. However, a note published in 19682

started a tradition of avoiding the use of this construct in favor of if statements and
while loops that more clearly indicated the intent behind such jumps. Nevertheless,
certain restricted jumps—specifically those that serve to terminate the execution
some construct—can help to clarify a program. Java, like the language Bliss before
it, provides only these restricted jumps.

2E. W. Dijkstra, “Goto Statement Considered Harmful,” Communications of the ACM, 11 (3),
1968, pp. 147–148. The title was actually added by an editor.
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Syntax

JumpStatement:
BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement

LabeledStatement:
Label : Statement

Label: Identifier

A break statement is legal only inside a loop, switch statement, or a labeled
statement with the same label. A continue statement is legal only inside a loop,
and if it has a label, it must be inside a loop with that label. We’ll come to
ThrowStatements in §8.1.

All jumps cause what is called the abrupt completion of some other statements
that execute the jumps. That is, execution of these other statements ends immedi-
ately, even if they contain later statements that would normally be executed. When
a statement completes abruptly, so does the statement that textually contains it
(which may be a block, if statement, etc.), and the process repeats until we get to
the target of the jump, which depends on the type of jump.

Statement Labels. The sole purpose of attaching a label to a statement is to
provide a way for break or continue statements to refer to that statement. As
you can see from the syntax, a statement may have any number of labels (since
the statement after a Label can itself be a LabeledStatement), although this is not
particularly useful. The label on a statement may not duplicate any other label
on or in that same statement. On the other hand, labels may duplicate the names
of other kinds of things—variables, fields, functions, types, packages, parameters—
although as a stylist matter, I strongly advise against this potentially confusing
practice. Otherwise, any identifier may be a label; in this book, I use capitalized
words.

7.5.1 The ‘break’ Statement

Syntax.

BreakStatement: break Labelopt ;

An unlabeled BreakStatement must occur within a switch, while, do, or for state-
ment. Otherwise, the Label must be attached to a statement that encloses the
break.

Semantics. Executing a break statement causes the program to exit from some
larger statement that contains the break, and to proceed to the following statement.
With a label, break exits from the statement with that label. Without a specific

Cross references: ReturnStatement 183ThrowStatement 185Identifier 79
Cross references: Label 180.
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label, it will exit from the smallest enclosing loop (while, do, or for) or switch
statement. That’s why it is the standard idiomatic way to mark the end of the
branch of a switch statement. It also allows us to put loop exits anywhere we
want, as illustrated by the loop-and-a-half idiom on page 175.

You’ll find breaks with labels useful in exiting from a loop from inside a switch
statement:

GetChars:

while (true) {

int c = input.read ();

switch (c) {

case -1:

break GetChars;

case ’a’:

...

}

}

or in exiting from nested loops:

/* In the list of arrays L, determine whether any array

* element, x, satisfies test P. */

Find:

for (L = myList; L != null; L = L.next) {

for (int k = 0; k < L.item.length; k += 1)

if (P (L.item[k])) {

x = L.item[k];

break Find; // Stops both loops

}

}

or when the construct from which you wish to exit is not a loop or switch3; for
example, here we exit from a block:

Find: {

for (k = 0; k < data.length; k += 1) {

if (P (data[k])) {

x = data[k];

break Find;

}

for (k = 0; k < reserve.length; k += 1) {

if (P (reserve[k])) {

x = reserve[k];

break Find;

3There was a notorious failure in the telephone network around Chicago some time back that
was tracked to a C programmer who had incorrectly thought that break would exit from an if

statement. In C, it cannot, which may be why we now find it in Java.
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}

}

7.5.2 The ‘continue’ Statement

Syntax.

ContinueStatement: continue Labelopt ;

A ContinueStatement is valid only inside a loop (while, do, or for). If supplied,
the Label must be attached to a loop that encloses the continue.

Semantics. Occasionally, one wants to restart the statement of a loop rather
than to exit from the entire loop. The continue statement performs this rather
specialized form of jump. The generic while and for loops on the left have the
same effects as the loops on the right:

while (C) {

... continue; ...

}

while (C) {

CONTINUE: {

...break CONTINUE;...
} // continue here

}

for (I; C; U) {

... continue; ...

}

for (I; C; U) {

CONTINUE: {

...break CONTINUE;...
} // continue here

}

do {

... continue; ...

} while (C);

do {

CONTINUE: {

...break CONTINUE;...
} // continue here

} while (C);

That is, continue has the effect of terminating the current iteration at any
point in the middle and then going back to perform the loop test (C1) and repeat
the loop again. (The label CONTINUE is intended to represent some label that is
unused elsewhere in the program.)

With a labeled continue, the effect is the same, except that the loop body that
is restarted is the one with the given label. A continue statement is only legal in
a loop, and the label, if present, must be the label of an enclosing loop.

In truth, continues are rather rare in programs. Here, though, is one possible
example:

while (true) {

String line = input.readLine ();

if (line.startsWith ("#"))

Cross references: Label 180.
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continue; // Comment line. Skip and go to next line.

Other processing.
}

7.5.3 The ‘return’ Statement

Syntax.

ReturnStatement: return Expressionopt ;

This statement may occur only inside a method. The Expression must not be
supplied if the method returns void, and must be supplied otherwise.

Semantics. The effect of return is to terminate execution of the enclosing method
body and return to the caller. If the Expression is supplied, it is first evaluated and
the method call yields that value (after it is implicitly converted, if necessary, to
the return type of the method).

Cross references: Expression 119.
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Chapter 8

Exception Handling

In the real world, good programs contain a large amount of code whose sole purpose
is to check that inputs meet their requirements, to take corrective action when they
don’t, and to detect and correct error conditions that may arise owing to failures
or limitations of one’s machine and the hardware it connects to. This is all a vital
part of making a program “robust,” “idiot-proof,” and “user-friendly,” and frankly
can be extremely dull1. It can also clutter up and obscure otherwise clear source
code. Therefore, generations of programming language designers have sought ways
to segregate the handling of exceptional conditions that arise during execution of
a program from “normal” parts of the code. The generic term for the responsible
parts of a programming language is exception handling.

Java uses a mechanism similar to that of C++. The mechanism comprises two
statements: throw statements signal exceptional conditions, and try statements
do something about them.

Syntax

ThrowStatement:
throw Expression ;

TryStatement:
try Block Handler+ Finallyopt
try Block Handler∗ Finally

Handler:
catch ( Parameter ) Block

Finally:
finally Block

1This may partially explain why so-called buffer overruns, which result when a program fails to
check whether it is receiving too much data, are the largest class of bug that allow security breaches
in operating systems (including a weakness exploited by the infamous Internet Worm of 1988).
Cross references: Expression 119, Block 168, Parameter 100.
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8.1 Throw Statements and Exception Types

The conventional way to indicate that something has gone wrong in a Java program,
or that something “unusual” has happened, is to bundle up information about what
has happened into an exception object and then to “throw” it. For example, you
might want a certain function to check the validity of its arguments and complain
if there’s something wrong:

/** Item #N (numbering from 0) in list L.

* N must be >= 0, and L must be non-null. */

static List nth (List L) {

if (N < 0 || L == null)

throw new IllegalArgumentException ();

...

}

The operand of throw is just an ordinary object; this particular example uses the
built-in exception type IllegalArgumentException (which is in package java.lang).
The only requirement on the object thrown is that its type must be a subclass of
the built-in class Throwable (also in java.lang), whose complete definition you
will find in §8.4. In the example above, the exception value is created on the spot
with the new operator, but there is no requirement that one create a new exception
each time, and any exception-valued expression is fine.

The effect of throw is to evaluate its expression, then to complete abruptly.
As usual, this causes the statement or block containing the throw to complete
abruptly. If this process causes the body of function that contains the throw to
complete abruptly, then the effect is to cause the call to that function to complete
abruptly, exactly as if it was a throw statement with the same exception value.
This process continues until either you run out of function calls (that is, the main
program completes abruptly), or you reach a try statement (§8.2) that handles the
exception.

Implicit Throws. The Java language defines certain legality checks that are au-
tomatically performed during execution, failure of which causes one of the built-in
exceptions to be thrown implicitly. For example, the statement on the left has the
same effect as that on the right:

x = p.value; if (p == null)

throw new NullPointerException ();

x = p.value;

We summarize these implicit exception classes and other standard exception classes
in Table 8.1.

8.2 Catching Exceptions: Try Statements

If your program makes no provision for handling exceptions, then throwing an ex-
ception basically brings your program (more accurately, the current thread, see §11)
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to a halt. Friendly implementations generally give you a stack trace, which shows
where (what function and line) the exception was thrown, where that function was
called, and so on, thus allowing you to localize the error.

However, sometimes you anticipate getting exceptions and are prepared to do
something about them. For this purpose, Java provides the try statement, which
gives you the ability to define handlers for any desired set of exceptions. The generic
try statement:

try {

Normal statements
} catch (ExcpType1 e1) {

Handler statements 1
} catch (ExcpType2 e2) {

Handler statements 2
} catch ...

} finally {

Clean-up statements
}

has the following meaning:

1. Execute the block containing the Normal statements.

2. If this block completes abruptly as the result of a thrown exception, let’s call
it E for reference, then check E against the each of the Parameter clauses of
the handlers (if any) in turn.

2a. If E instanceof T , where T is the formal parameter type of one of the
handlers2, then we say that the first such matching handler catches the
exception. Assign the exception value to the formal parameter and then
execute the Handler statements for that handler.

2b. If no handler catches the exception, then we say that the exception is
propagated. That is, the try statement completes abruptly, and throws
the same exception.

3. However the try statement completes, whether abruptly (because of a throw
or any other kind of jump) or normally (by reaching the end of the Normal
statements), execute the Clean-up statements before continuing. These state-
ments may themselves complete abruptly, in which case the original cause
of completion is “forgotten.” Otherwise, if the clean-up statements complete
normally, then whatever caused the completion of the try block is re-instated:
if completed normally, then the whole try completes normally; if completed
by a break, then we continue as if the clean-up statements performed that
break; likewise for continue, throwing an exception, or returning a value.

2See §6.6.3 concerning the instanceof operator
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It is perfectly all right for a handler to complete abruptly by means of a throw.
Because such a throw does not occur within the Normal statements of the try, it
causes the try statement itself to complete abruptly with an exception (in other
words, such a throw is not handled by any of the handlers).

8.2.1 Simple example: single handler

Well, this is all extremely intricate, and some examples are definitely in order. Let’s
start with an example of a main program:

static void main (String[] args) {

try {

if (args.length == 1)

print (2, Integer.parseInt (args[0]));

else

print (Integer.parseInt (args[0]),

Integer.parseInt (args[1]));

} catch (NumberFormatException e) {

System.err.println ("Error: improper number.");

Usage ();

}

}

The parseInt routine checks to make sure that its argument has the form of a
valid decimal number (a string of decimal digits). If it is not, then parseInt throws
the exception NumberFormatException. In this case, we have a single handler that
prints an error message and then calls a function Usage (which is supposed to print
a helpful summary of how to use this program). You can’t see the actual throw
command here; it is buried somewhere inside the implementation of parseInt.
Nevertheless, when it is executed, that call to parseInt completes abruptly, as
does the statement containing that call (the call to print), as does the if statement
containing both of them. If both calls to parseInt complete normally, on the other
hand, then the error message is not printed and Usage is not called; we simply
proceed to the end of the try statement (which also happens to be the end of main
in this case).

This example assumes that there are either one or two elements in the array
args. However, it is actually possible for args to have no elements. In that
case, attempting to evaluate args[0] causes the Java program to implicitly throw
ArrayIndexOutOfBoundsException, because there is no element #0 in the array.
The single handler in main does not handle that type of exception, so attempting
this array access will cause the try statement to complete abruptly, as will the call
to main (and if main is being used as the main program, as is usual, rather than an
ordinary function, then the entire program would then terminate with an unhandled
exception).
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8.2.2 Multiple handlers.

Sometimes we want to respond to different exceptions in different ways, as in this
example:

/** The first line of the file named NAME. Returns null

* if there is no such file, or there is an error reading

* it. Prints a warning in these cases. */

String readFirstLine (String name) {

try {

BufferedReader inp =

new BufferedReader (new FileReader (name));

String result = inp.readLine ();

inp.close ();

return result;

} catch (FileNotFoundException e) {

System.err.println ("Warning: " + name

+ " not found.");

return null;

} catch (IOException e) {

System.err.println ("Warning: I/O error on "

+ name);

return null;

}

}

The constructor for class FileReader will throw FileNotFoundException if (as you
might guess), it can’t find a file with the specified name. The functions readLine
and close will throw IOExceptions if something goes wrong while reading the file3.
The two handlers distinguish these cases and give distinct error messages for them.

8.2.3 Using the Caught Exception.

In the preceding example, the order of the handlers is important: class FileNot-

FoundException is a subclass (extends) class IOException. Therefore, had I put
the IOException handler first, I would never have seen the “file not found” case.
In fact, we can always make do with a single handler, like this:

...

return result;

} catch (IOException e) {

if (e instanceof FileNotFoundException)

System.err.println ("Warning: " + name

+ " not found.");

3This covers a lot of ground in the case of files. For example, if the file resides on another
machine, that machine can crash in the middle of an operation. They’re not called “exceptional”
for nothing.
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else

System.err.println ("Warning: I/O error on "

+ name);

return null;

}

}

This is also the first example in which I have actually used the argument to the
handler. We can, in fact, make better use of it:

...

return result;

} catch (IOException e) {

System.err.println ("Warning: " + e);

return null;

}

This code simply converts the exception value e into a String, implicitly using the
toString function. As it happens, class Throwable overrides this function to yield
a somewhat more helpful message. See §8.4 for a few more details.

Re-throwing exceptions. Suppose that instead of returning null in the exam-
ples above, we instead wanted to print a warning, and then throw the same exception
that had been thrown to us. Here’s the typical pattern:

...

return result;

} catch (IOException e) {

System.err.println ("Warning: readFirstLine failed.");

throw e;

}

Since the throw is outside the normal statements of the enclosing try statement, it
doesn’t get re-caught by the handler, and instead abruptly completes the try. This
example also serves to illustrate that exceptions needn’t be created at the time they
are thrown. Actually, we also have to change the function header in this example,
as explained in the next section.

8.2.4 The Finally Clause

It is sometimes important to take some “clean-up” action before leaving a func-
tion (or a section of a function), no matter how you leave. For example, in our
readFirstLine example, it is important to close the stream before leaving, since
otherwise the program “leaks open files,” which are generally limited resources. The
finally clause on a try statement is intended for this purpose. We could re-code
the example like this:
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String readFirstLine (String name) throws IOException {

try {

BufferedReader inp =

new BufferedReader (new FileReader (name));

String result = inp.readLine ();

return result;

} catch (IOException e) {

System.err.println ("Warning: " + e);

throw e;

}

finally {

inp.close ();

}

}

Either we leave the Normal statements by means of return, or by re-throwing an
IOException from the catch clause, or perhaps by throwing some other (unchecked)
exception. In all cases, we “interrupt” this completion process to execute inp.close()
first. Then the program returns a value or throws an exception. We are guaranteed
that the program performs the close operation. Now, the close operation can it-
self throw an exception, in which case that takes precedence and the original event
that brought us to the finally clause is forgotten.

8.3 Declaring Thrown Exceptions

Let’s step back from language details for just a moment and consider proper software
design and documentation. Programs can be huge beasts, and our main tool for
getting a mental grip on them is to divide and conquer—to break the larger problem
ultimately into small, well-defined components. This is not sufficient in itself; after
all, programs already consist of small components: individual statements. The
separation into components is not effective unless each component simplifies the
collection of code that constitute it by presenting a usefully condensed interface to
the rest of the system (in the English sense of the term as opposed to the Java
construct).

One intention behind the design of Java’s class and interface constructs was
to provide a way of presenting such interfaces. The components, in this view, are
objects and their interfaces consist of two parts:

• The syntactic specification of the accessible members. This consists of all
the Java code of class except for the bodies of the functions. For functions,
therefore, it includes of the function name, return type, and argument types.

• The semantic specification of the accessible members. This consists of the
comments (or other documentation) on the accessible members and for the
class or interface itself.
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The syntactic specification tells you what the compiler will accept as a legal call of
a method (or legal use of a field). The semantic specification ideally tells you what
this method (or field) does and tells what additional conditions your program must
fulfill to call it.

Part of this specification consists of indicating what you (the designer of the
class or interface) consider to be a legal use of the methods in it. This often takes
the form of preconditions, as in the second sentence of the following comment:

/** The square root of X. X must be non-negative. */

double sqrt (double x) { ... }

With this specification, if the programmer using sqrt fails to fulfill the precondition,
all bets are off; the “contract” with the square-root function is broken, and the latter
is free to do anything, such as to call System.exit and stop the program.

It is much friendlier to throw an exception instead, but if you do so, then in
effect the exception becomes part of what the function “returns,” and therefore
ought to be part of the syntactic specification. Java provides for exactly this sort
of specification, using the throws clause, which was mentioned (but not defined)
in §5.8.

Syntax.

Throws: throws ClassType+,
This clause, which is optional in function definitions, lists a set of exceptions that
may get thrown out of a given function. More accurately, it lists a set of exception
types that a thrown exception might be an instance of. Seeing this clause, a user
of the class knows that a call to this function may terminate abruptly with one
of these exceptions—that any of these exceptions might go unhandled within the
function. The clause does not mean that it actually is possible for the exception to
be thrown; for example, the following is legal:

void check () throws IllegalStateException, IOException

{ }

The body is empty, so of course no exception will be thrown. Nevertheless, the
throws clause is valid, and programmers using check should program as if it might
throw either of the listed exceptions (by listing them, the implementor of check
reserves the right to put something in the body that causes these exceptions).

In fact, a throws clause listing is mandatory whenever the body of a function
can throw a checked exception, and it must cover all checked exceptions that might
be thrown. Exceptions are all ultimately extensions of the class Throwable, but the
set of exception classes has a bit more structure than that. Two of the built-in sub-
classes of Throwable: Error and RuntimeException (both in package java.lang),
and any exception class that is subclass of either of them, are unchecked exceptions,
and need not be reported in throws clauses (although they can be). All other ex-
ception classes are checked. For example, since the last version of readFirstLine in

Cross references: ClassType 76
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§8.2 can throw the exception IOException, a checked exception, the full definition
of the function must read like this:

String readFirstLine (String name) throws IOException {

try {

BufferedReader inp =

new BufferedReader (new FileReader (name));

String result = inp.readLine ();

inp.close ();

return result;

} catch (IOException e) {

System.err.println ("Warning: readFirstLine failed.");

throw e;

}

}

For the purposes of this rule, a function body is deemed to throw a checked
exception if

1. It contains a throw of an exception whose static type is checked,

2. Or it contains a call to function whose throws clause contains a checked
exception,

3. And (in either cases (2) or (3)), no catch clause is positioned to intercept
that exception before it propagates out of the function.

Thus, the programmer is forced either to deal with each checked exception or an-
nounce in the interface that it might be propagated.

Of course, you can get lazy, and simply declare every function in your program
like this:

void anyFunction (...) throws Throwable {

...

}

Then you never have bother with try statements. Of course, your program will
terminate at the first exception, but presumably you don’t care. I hope it is no
surprise that I do not recommend this practice for real programs.

The design rationale behind having a category of unchecked exceptions is that
they are intended for situations where the opportunities for throwing a certain ex-
ception are so pervasive that it would obscure programs to continually have to
mention them. All the implicitly thrown exceptions are unchecked. This makes a
good deal of sense, in general. It is difficult to turn around in Java without doing
something an object, which would mean having to mention NullPointerException

in every single function is that exception weren’t unchecked. Other unchecked ex-
ceptions, such as IllegalArgumentException represent pervasive situations; every
programmer knows that it is wrong to violate the preconditions of a function, which
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is what this exception is intended to represent. You are free to add new unchecked
exceptions (by extending Error or RuntimeException), but in general you should
reserve such exceptions for similarly pervasive situations.

8.4 Exceptions in the java.lang Package

The Java standard libraries just bristle with exception definitions, but those defined
in java.lang are particularly important, since they are often woven into the very
fabric of the language. Table 8.1 shows the hierarchy of exceptions in java.lang.

It all starts with the class Throwable. By definition, the types of everything
given to throw and all types mentioned in the parameters of catch clauses and in
throws clauses must be subclasses of this type. Its basic definition is as follows
(with all bodies replaced by semicolons):

public class Throwable {

public Throwable();

public Throwable(String message);

public String getMessage();

public String getLocalizedMessage();

public void printStackTrace();

public void printStackTrace(PrintStream s);

public void printStackTrace(PrintWriter s);

public Throwable fillInStackTrace();

public String toString(); // Overrides Object.toString

}

Since Throwable defines these methods, they are all available in every exception
class. Furthermore, by convention, almost all exceptions (probably including those
you define) simply define constructors to parallel those of Throwable, and inherit
everything else. Here are some more details of the methods:

getMessage() Every Throwable contains a message (which may be null). This
returns that message. See the constructors for how to set the message.

printStackTrace(. . . ) When you create an exception object (with new), Java
stores in it a record of exactly where in the program this creation took place.
The printStackTrace functions print it, either to an explicit stream or writer,
if given, or (for the parameterless version) to the standard error output stream,
System.err. The exact form of a stack trace depends on the implementation
of Java you are using. At the moment, Sun’s system produces something like
this:

java.lang.NullPointerException

at glorp.mogrify(glorp.java:8)

at glorp.print(glorp.java:4)

at glorp.main(glorp.java:13)
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Saying that (at line number 13) main has called print, which (at line num-
ber 4) has called mogrify, which has thrown (probably implicitly) a NullPointerException
at line number 8.

fillInStackTrace() Revise the stack trace to start from the point of this call, rather
than from the point of creation, and return the same exception. Sometimes,
you want to revise the stack trace contained in an exception. For example,
the handler

catch (IOException excp) {

if (tooHardForMe (excp))

throw (IOException) excp.fillInStackTrace ();

...

}

will re-throw excp if it’s too hard to handle, but will tell the rest of the
program that it was this handler that caused the problem (perhaps to hide
the gory details).

getLocalizedMessage() The Throwable class establishes a default definition for
this, which is simply to return the same value as getMessage. If you define
new exceptions, you can override the definition with something that produces
a message tailored to the “locale” in which the program is running.

toString() An overriding of the standard toString definition in Object that pro-
duces a string containing the name of the exception and (if non-null) the value
of getMessage.

Throwable(), Throwable(S) Constructors for new exception objects either with
a null message (first form) or with the given string as their message. The
stack trace is filled in with the place that called the constructor.

When you create new exception classes, you will usually just follow the pattern
shown here for the built-in type Exception: The class Exception is representative:

public class Exception extends Throwable {

public Exception () {

super ();

}

public Exception (String message) {

super (message);

}

}

That is, it looks just like Throwable, but with new constructors that simply call
the analogous constructors in Throwable. Most exceptions you define will extend
Exception. You can also extend RuntimeException or Error to get new unchecked
exceptions (something you should do sparingly).
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Throwable

Error Exception

RuntimeException

ArithmeticException
ArrayIndexOutOfBoundsException
ArrayStoreException
ClassCastException
ClassNotFoundException
CloneNotSupportedException
IllegalAccessException
IllegalArgumentException
IllegalMonitorStateException
IllegalStateException
IllegalThreadStateException
IndexOutOfBoundsException
InstantiationException
InterruptedException
NegativeArraySizeException
NoSuchFieldException
NoSuchMethodException
NullPointerException
NumberFormatException
SecurityException
StringIndexOutOfBoundsException
UnsupportedOperationException

AbstractMethodError
ClassCircularityError
ClassFormatError
ExceptionInInitializerError
IllegalAccessError
IncompatibleClassChangeError
InstantiationError
InternalError
LinkageError
NoClassDefFoundError
NoSuchFieldError
NoSuchMethodError
OutOfMemoryError
StackOverflowError
ThreadDeath
UnknownError
UnsatisfiedLinkError
UnsupportedClassVersionError
VerifyError
VirtualMachineError

Table 8.1: The hierarchy of exceptions in java.lang (lines down indicate subclasses;
Throwable is a superclass of all exceptions).



Chapter 9

Strings, Streams, and Patterns

In olden times (that is, until the early 1980’s), essentially all communication with
ordinary application programs was in the form of text: that is, strings (sequences)
of characters, sometimes presented as broken into lines and pages. The situa-
tion is much more varied these days—what with bit-mapped displays, point-and-
click, voice communication, multi-media, and the like—and, of course, computer-
controlled machinery (industrial robots, on-board flight-control systems) is an ex-
ception that has been with us nearly since the beginning. Nevertheless, the manip-
ulation of text still has an important place, and your author’s somewhat antique
position is that text is often a distinct improvement over some more “modern”
interfaces that have displaced it.

Java provides a number of library classes that deal with plain textual data. The
primitive type char represents single characters in the Unicode character set. Most
commonly, these crop up in your programs when you extract them from Strings,
using the charAt method. Corresponding to this primitive type, the Java library
contains the wrapper class Character, which defines a number of useful functions
for manipulating individual characters. The class you’re likely to deal with most is
String, which, as we’ve seen, gives us sequences of characters, suitable for reading
from a terminal or file or for printing. This class allows you to compare strings and
extract pieces of them, and thus to parse written notation (that is, to resolve it into
its grammatical constituents and determine its meaning). However, complex anal-
ysis of text is quite tedious with the primitive tools provided by String and recent
versions of Java have added a new class, Pattern (in package java.util.regex),
which as its name suggests, provides a language for describing sets of Strings.
Together with another new type, java.util.Scanner (§9.6), you can describe the
format of textual input. On the other side of the coin, the construction of Strings
generally involves the concatenation of individual pieces, some of which are con-
stants and some of which are created dynamically. Here, too, Java 2, version 1.5
has introduced a set of convenient formatting methods, adapted from C, for complex
String construction (§9.2.1).

Input and output by a program requires additional abstractions (§9.4). Again,
these involve sequences of characters or other symbols (such as bits or bytes). How-
ever, there is a very strong bias towards producing output and consuming input
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incrementally, so that the program need never have the complete sequence of inputs
or outputs on hand simultaneously. Historically, this was for reasons of efficiency
and capacity (if you are processing billions of characters using a computer with
mere kilobytes of memory, you have little choice).

9.1 Bytes and Characters

It is often said that the business of computers is “processing symbols.” Ultimately,
this means that the atomic constituents of a computer’s data come from some finite
alphabet and these constituents’ only characteristic is that they are all distinct from
one another. So, you often hear that “computers deal with 1’s and 0’s”—that the
basic alphabet consists of the set of bits: {0, 1}. While this is true, our programs
usually deal with data in somewhat larger pieces—clumps of bits, if you will. These
days, the smallest of these is typically the byte, 8 bits, represented directly in Java
as the type byte.

However, the fact our basic alphabet consists of numbers is misleading. The
whole purpose of symbols is to stand for things. In the case of computers, we use
numbers to stand for everything. In particular, we use them to stand for printed
characters. The Java type char, which we think of as being a set of printed char-
acters, is an integer type, whose members can be added and multiplied. If we want
to use chars to represent characters (as we usually do), this becomes evident by
how we use them. So, if the computer sends the number 113 to a printing device
in a particular way, it will cause the lower-case letter ’q’ to be printed. Thus, we
humans will think of the computer as dealing with letters, whereas internally it is
dealing with numbers.

9.1.1 ASCII and Unicode

Most programs today are written using an alphabet (or, as we computer people often
say, character set) that goes by the name ASCII, standing for American Standard
Code for Information Interchange. The same standard character set suffices for
most of the textual input and output by programs. This standard defines both a
set of characters and a computer-friendly encoding that maps each character to an
integer in the range 0–127, as detailed in Table 9.1. This set contains ordinary,
printable characters (upper- and lower-case letters, digits, punctuation marks, and
blanks), and an assortment of non-printing control characters (so called because
in the old days, they used to be used to control teletypes or other communication
devices). Among the control characters, there are several format effectors whose
effect is to control spacing and line breaks—things like horizontal and vertical tabs,
line feed, carriage return, form feed (which skips to a new page), and backspace.
See §6.3.1 for a further discussion.

Needless to say, there are both technical and political consequences to having a
character set that is called “American” and that only has room for 127 characters.
To accommodate an international clientele, a group called the Unicode Consortium
has developed a much more extensive character set (generally called Unicode) with
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65536 (216) possible codes that incorporates many of the world’s alphabets. Its
first 127 characters are a copy of ASCII (so a program written entirely in ASCII
is also written in Unicode). The other characters may appear in Java programs,
just like ordinary ASCII characters. That is, those that are letters or digits (in any
alphabet) are perfectly legal in identifiers, and all the extra characters are legal as
character or string literals (§9.2, S6.3.1) and in comments.

Unfortunately, most of our compilers, editors, and so forth are geared to the
ASCII character set. Therefore, Java defines a convention whereby any Unicode
character may be written with ASCII characters. Before they do anything else to
your program, Java translators will convert notation \uabcd (where the four italic
letters are hexadecimal digits) into the Unicode character whose encoding is abcd16.
The notation actually allows you to insert any number of ‘u’, as in \uuu0273. In
principle, you could write the program fragment

x= 3;

y=2;

as

\u0078\u003d\u0020\u0033\u003b\u000a\u0079\u003d\u0032\u003b

but who would want to? The intention is to use Unicode for cases where you need
non-ASCII letters. For example, if you wanted to write

double δ = Ψ_1 - Ψ_0;

you could write

double \u03b4 = \u03a8_1 - \u03a8_0;

and the compiler would be perfectly happy. Alas, getting this printed with real
Greek letters is a different story, requiring the right editors and other programming
tools. That topic is somewhat beyond our scope here.

Most of the early work in computers was done in the United States and Western
Europe. In the United States, the ASCII character set (requiring codes 0–127)
suffices for most text, and the addition of what are called the Latin-1 symbols
(codes 128-255) take care of most of Europe’s needs (they include characters such
as ‘é’ and ‘ö’). Therefore, characters in those parts of the world fit into 8 bits, and
there has been a tendency to use the terms “byte” and “character” as if they were
synonymous. This confusion remains in Java to some extent, although to a lesser
extent than predecessors such as C. For example, as you will see in §9.4, files are
treated as streams of bytes, but the methods we programmers apply to read or write
generally deal in chars. There is some internal translation that the Java library
performs between the two (which in the United States usually consists in throwing
away half of each char on output and filling in half of each char with 0 on input)
so that we don’t usually have to think about the discrepancy.
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d1
d0 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O

1 ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^

2  ! " # $ % & ’ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ ] ^

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Table 9.1: ASCII codes (equivalent to the first 128 Unicode characters). The code
for the character at line d0 and column d1 is 0xd0d1. The characters preceded by
carats ^ are control characters, further described in Table 9.2; the notation means
that the character ^c can be produced on a typical computer keyboard by holding
down the control-shift key while typing c.

Table of Control Characters
Name Ctrl Meaning Name Ctrl Meaning

NUL ˆ@ Null DLE ˆp Data link escape
SOH ˆa Start of heading DC1 ˆq Device control 1
STX ˆb Start of text DC2 ˆr Device control 2
ETX ˆc End of text DC3 ˆs Device control 3
EOT ˆd End of transmission DC4 ˆt Device control 4
ENQ ˆe Enquiry NAK ˆu Negative acknowledge
ACK ˆf Acknowledge SYN ˆv Synchronize
BEL ˆg Bell ETC ˆw End transmitted block
BS ˆh Backspace CAN ˆx Cancel
HT ˆi Horizontal tab EM ˆy End of medium
LF ˆj Line feed SUB ˆz Substitute
VT ˆk Vertical tab ESC ˆ[ Escape
FF ˆl Form feed FS ^\ File separator
CR ˆm Carriage return GS ˆ] Group separator
SO ˆn Shift out RS ^^ Record separator
SI ˆo Shift in US ^_ Unit separator

DEL ˆ? Delete or rubout

Table 9.2: ASCII control characters and their original meanings.
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9.1.2 The class Character

Besides its use as a wrapper for primitive characters (see §10.5), the class Character
is stuffed with useful methods for handling chars. The ones most likely to be of
interest first are the ones that distinguish types of characters:

Character.isWhitespace(c) is true iff char c is “whitespace”—that is, a blank,
tab, newline (end-of-line in Unix), carriage return, form feed (new page), or
one of a few other esoteric control characters.

Character.isDigit(c), Character.isLetter(c), Character.isLetterOrDigit(c)
test whether c is a digit (’0’–’9’), letter (’a’–’z’ and ’A’–’Z’). Actually, the com-
plete set of letters and digits is much larger, comprising most of the world’s
major alphabets.

Character.isUpperCase(c), Character.isLowerCase(c) test for upper- and lower-
case letters.

As a stylistic matter, it is always better to use these than to test “by hand:”

/* Good */ /* Bad */ /* REALLY Bad */

if (Character.isDigit(x)) if (x>=’0’ && x<=’9’) if (x>=48 && x<=57)

A few other routines are sometimes useful for text manipulation:

Character.toLowerCase(c), Character.toUpperCase(c) return the lower- or upper-
case equivalent of c, if it’s a letter, and otherwise just c.

Character.digit(c, r) returns the integer equivalent of c as a radix-r digit, or
−1 if c isn’t such a digit. So digit(’3’, 10) == 3, digit(’A’, 16) == 10,
digit(’9’, 8) == -1.

Character.forDigit (n, r) converts numbers back into digits. So forDigit(5, 10) == ’5’,
forDigit(11,16) == ’b’.

If you happen to have a method where you use these a lot, you’ll soon get tired
of writing Character.. Fortunately, placing

import static java.lang.Character.*;

among the import statements at the beginning of a program file will make it
unnecessary to write the qualifier.

9.2 Strings

Pages 203–205 list the headers of the extensive set of operations available on Strings.
In addition, the core Java language provides some useful shorthand syntax for using
some of these operations, as described in §9.2

Objects of type String are immutable: that is, the contents of the object pointed
to by a particular reference value never changes. It is not possible to “set the fifth
character of string y to c.” Instead, you set y to an entirely new string, so that
after
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y = "The bat in the hat is back.";

x = y;

y = y.substring (0, 4) + ’c’ + y.substring (5);

the variable y now points to the string

The cat in the hat is back.

while x (containing y’s original value) still points to

The bat in the hat is back.

This property of Strings makes certain uses of them a bit clumsy or slow, so there
is another class, StringBuilder, whose individual characters can be changed (see
§9.3).

9.2.1 Constructing Strings

You will almost never have to construct Strings using new String(· · ·), so I have
not bothered to show any in Figure 9.1. String literals (like "" or "Hello!") handle
most constant strings.

The valueOf methods allow you to form Strings from primitive values. For
example,

String.valueOf (130+3) is "133"

String.valueOf (true) is "true"

String.valueOf (1.0/3.0) is "0.3333333333333333"

Normally, you don’t need these routines, because the concatenation operator (+) on
String uses valueOf to convert non-string arguments. For example,

"The answer is " + (130 + 3) is "The answer is 133"

"" + (130 + 3) is "133"

When applied to Objects (reference-type values), valueOf (and therefore String
concatenation) becomes particularly interesting. For non-null reference values, it
uses the toString operator to convert the object to a String. Now, this function
is defined in class Object, and therefore can be overridden in any user-defined type.
You can therefore control how types you create are printed—a very pretty example
of object-oriented function dispatching. For example, suppose I define

/** A point in 2-space. */

class Point {

public double x, y;

· · ·
public String toString () {

return "(" + x + "," + y + ")";

}

}
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package java.lang;

public final class String

implements java.io.Serializable, Comparable<String>, CharSequence

{

/* Unless otherwise noted, the following routines will throw a

* NullPointerException if given a null argument and

* IndexOutOfBoundsException if a non-existent portion of a

* String is referenced. */

/** A Comparator for which

* compare(s0, s1) == s0.compareToIgnoreCase (s1)

* for Strings s0 and s1 (used for specifying the order of

* Strings in sorted lists and the like). */

public static final java.util.Comparator<String> CASE_INSENSITIVE_ORDER;

/* Conversions and translations */

/** The following 6 functions all return a printable

* representation of their argument. */

public static String valueOf(char x);

public static String valueOf(double x);

public static String valueOf(float x);

public static String valueOf(int x);

public static String valueOf(long x);

public static String valueOf(boolean x);

/** If OBJ == NULL, then the string "null". Otherwise,

* same as OBJ.toString (). */

public static String valueOf(Object obj);

/** A String that is formed by converting the trailing arguments

* (0 or more Objects) into Strings according to the pattern given

* in FORMAT. See §9.2.1 for details. */

public String format (String format, Object ... args);

/* Accessors */

/** The length of this. */

public int length();

/** Character #K of this (numbering starts at 0). */

public char charAt(int k);

/** The String whose characters are charAt(b)..charAt(e-1). */

public String substring(int b, int e);

/** Same as substring(b, length()). */

public String substring(int b);

Continues. . .

Figure 9.1: Excerpts from class String, part 1. Excludes bodies.
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Class String, continued.

/* Predicates */

/** Compare this String to STR lexicographically. Returns a

* value less than 0 if this String compares less than STR,

* greater than 0 if this String is greater than STR, and 0

* if they are equal. */

public int compareTo(String str);

/** Same as compareTo ((String) obj). Thus, throws a

* ClassCastException if OBJ is not a String. */

public int compareTo(Object obj);

/** As for compareTo(STR), but ignores the distinction between

* upper- and lower-case letters. */

public int compareToIgnoreCase(String str);

/** If FOLD is false, equivalent to

* substring(K0,K0+LEN).compareTo(S.substring(K1,K1+LEN)) == 0,

* and otherwise (if FOLD is true) equivalent to

* 0 == substring(K0, K0+LEN)

* .compareToIgnoreCase (S.substring(K1, K1+LEN))

* except that it returns false if either substring operation

* would cause an exception. */

public boolean regionMatches(boolean fold, int k0,

String S, int k1, int len);

/** Same as regionMatches (false, K0, S, K1, LEN) */

public boolean regionMatches(int k0, String S, int k1, int len);

/** Same as

* OBJ instanceof String && compareTo ((String) OBJ) == 0. */

public boolean equals(Object obj);

/** Same as compareToIgnoreCase (STR) == 0. */

public boolean equalsIgnoreCase(String str);

/** Same as regionMatches (K0, STR, 0, STR.length ()) */

public boolean startsWith(String str, int k0);

/** Same as startsWith (0, STR) */

public boolean startsWith(String str);

/** Same as startsWith (length () - STR.length (), STR). */

public boolean endsWith(String str);

/* Conversions and translations */

/** The following four routines return lower- or upper-case

* versions of this String. The LOCALE argument, if present,

* modifies the result in the case of Turkish. */

public String toLowerCase();

public String toUpperCase();

Continues. . .

Figure 9.1, continued: The class String, part 2.
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Class String, continued.

/* Non-destructive modifications */

/** Returns a new string consisting of this string concatenated

* with S. */

public String concat(String S);

/** A string copied from this, but with all instances of C0

* replaced by C1. */

public String replace(char c0, char c1);

/** The string resulting from trimming all characters that are

* <= ’ ’ (space) from both ends of this. Thus, trims blanks,

* tabs, form-feeds, and in fact, all ASCII control

* characters. */

public String trim();

/* Searches */

/** The smallest (first) k>=S such that C == charAt(k), or -1

* if there is no such k. */

public int indexOf(int c, int s);

/** Same as indexOf (C, 0). */

public int indexOf(int c);

/** The largest (last) k<=S such that C == charAt(k), or -1

* if there is no such k. */

public int lastIndexOf(int c, int s);

/** Same as lastIndexOf (C, length ()-1). */

public int lastIndexOf(int c);

/** The smallest (first) k>=S such that startsWith (TARGET, S),

* or -1 if there is none. */

public int indexOf(String target, int s);

/** Same as indexOf (TARGET, 0) */

public int indexOf(String target);

/** The largest (last) k<=S such that startsWith (TARGET, S), or

* -1 if there is none. The last occurrence of the empty

* string, "", is at length (). */

public int lastIndexOf(String target, int s);

/** Same as lastIndexOf (TARGET, length ()) */

public int lastIndexOf(String target);

/* Miscellaneous. */

/** Returns this string. */

public String toString();

/** Returns an integer hash code for this string. The actual

* code returned is the Java int equal to

* s031
n−1 + s131

n−2 + . . .+ sn−1 mod 232 */

public int hashCode();

/** A String .equal to this and having the property that

* s0.equals (s1) iff s0.intern () == s1.intern (). */

public String intern();

}

Figure 9.1, continued: The class String, part 3.
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Now if in a program I write something like

Point start = ...;

· · ·
System.out.println ("Starting point: " + start);

// same as "Starting point: " + String.valueOf (start)

I could see printed

Starting point: (1.1,-2.3)

There is a default toString that works for all objects. On String, it is simply the
identity function.

To construct more complicated Strings, you will generally use A.concat(B),
more often written conveniently as A + B, or the extremely powerful method
format, a welcome addition to Java that came in with Java 2, version 1.5.

To understand the idea behind format, it’s best to look at an example. Suppose
that I am trying to create a String of the form

"Average of 1000 inputs: 29.65, standard deviation: 4.81."

where the numbers come from variables N, mean, and sigma. I can use concatenation
and write this as

"Average of " + N + " inputs: " + mean + ", standard deviation: " + sigma;

This works, but has the slight problem that mean and sigma get printed with how-
ever many decimal places it takes to represent their value unambiguously, whereas
we were content with two places. You might also object that it looks a tad messy.
Now, there is another way to produce the String we want:

String.format ("Average of %d inputs: %.2f, standard deviation: %.2f",

N, mean, sigma);

which inserts the values of N, mean, and sigma at the places indicated by the format
specifiers %d (which means, “format as a decimal integer”), and %.2f (which means
“format as a decimal numeral rounded to two places to the right of the decimal
point”). C programmers will recognize the format specifiers from the printf series
of functions in the C library. The first argument to format is called the format
string, and the rest are simply additional arguments, which we index from 1 (so N

is argument 1, and sigma is argument 3).
Java has an extensive set of format specifiers, including a whole set (not found

in C) that handles dates and times. You’ll find a full description in the on-line
documentation for java.util.Formatter. Here, we’ll just do a quick summary of
some useful ones.

Most format specifiers have the general form

%[K][flags][W][.P]C

where square brackets (‘[· · ·]’) here indicate optional parts:
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C specifies the conversion to be applied to the argument to make it into a String.
In most cases, it is a single character.

K is an optional integer index, indicating which of the arguments is to be converted.
By default, format will take the arguments in order, so that our format-string
example above is equivalent to

"Average of %1$d inputs: %2$.2f, standard deviation: %3$.2f",

W is an optional non-negative integer width, giving the minimum size of the con-
verted string.

P is an optional non-negative integer precision, that restricts the number of char-
acters in some way, depending on C.

flags are characters that modify the meaning of C.

Table 9.3 shows some of the most useful values of C. The categories in that
table refer to possible types of arguments:

integral the integer numeric types int, short, long, and byte (or more accurately,
the corresponding “boxed” types Integer, Short, Long, and Byte: see §10.5),
plus java.math.BigInteger (a class that represents all the integers, or at
least those that fit in memory).

general any type.

floating point the numeric types float and double (again, more accurately Float

and Double), plus java.math.BigDecimal (a class that represents all rational
numbers expressible in finite decimal notation).

none doesn’t use an argument.

The flag characters generally have different meanings for different types, as de-
tailed above. However, the ‘-’ flag always means “left justify within the specified
width (W )”. So,

String.format ("|%-5d|%5d|", 13, 13) produces "|13 | 13|"

9.2.2 String Accessors

The accessors let you get at individual characters or substrings of a String. Char-
acters are numbers from 0, so that the last is at index length()-1. Substrings
are specified by giving the index of the first character of the substring and the
index just beyond that of the last character, which seems a little odd, but has
its advantages. An attempt to fetch non-existent characters raises the exception
IndexOutOfBoundsException.
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Conversion Category Description

‘d’ integral format as a decimal integer. With the ‘0’ flag, pad on
the left with 0s if necessary to get width W .

‘o’ integral format as an octal (base 8) integer. With the ‘#’ flag,
always start with 0 digit. The ‘0’ flag works as for ‘d’.

‘x’, ‘X’ integral format as a hexadecimal (base 16) integer. With ‘X’,
use upper-case letters. The ‘0’ flag works as for ‘d’.
With the ‘#’ flag, always start with ‘0x’ or ‘0X’.

‘f’ floating point format as a number with decimal point without an
(fixed point, as in 186000). If present, P gives the
number of decimal places.

‘e’, ‘E’ floating point format in scientific notation (as in 1.86e5). If present,
P is the number of digits after the decimal point.
With ‘E’, uses upper-case ‘E’ (1.86E5).

‘g’, ‘G’ floating point format in ‘f’ or ‘e’ (‘E’ in the case of ‘G’) format,
depending on size. If present, P is the number of
significant figures.

‘s’, ‘S’ general convert to String, usually using toString. With
‘S’, convert to upper case first. If present, P is the
maximum number of characters (any extra characters
are dropped). It’s possible for a type to provide even
more control over its ‘%s’ format by implementing the
Formattable interface. See the full documentation.

‘n’ none an end of line on output.
‘%’ none a percent sign (so, to output “33%”, you’d use the

format specifiers “%d%%”).

Table 9.3: Common format conversion characters and their meanings. See the text
for the meaning of “category.”
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Example: Squeeze out selected character.

/** Return S with all occurrences of C removed. */

static String squeeze (String S, char c) {

String S2;

S2 = "";

for (int i = 0; i < S.length; i += 1)

if (S.charAt (i) != c)

S2 += S.charAt (i);

return S2;

}

Here is another method, using substring:

/** Return S with all occurrences of C removed. */

static String squeeze (String S, char c) {

int i;

i = 0;

while (i < S.length) {

if (S.charAt (i) != c)

i += 1;

else

S = S.substring (0, i) + S.substring (i+1);

}

return S;

}

The original string object is not changed in either of these (indeed, it is impossible
to do so).

9.2.3 String Comparisons, Tests, and Searches

One very common pitfall (sometimes even for experienced programmer) is that
the equality operator (==) does not test equality of the contents in Strings. When
applied to Strings, it has its usual meaning: pointer equality. Within a given class,
all character-by-character identical string literals and constant String expressions
refer to the same String object; however, every application of new creates a new
object, so that

String x = "Foo";

x == new String (x) // false

new String (x) == new String (x) // false

x == x // true

x == "Foo" // true (in same class)

x.equals (new String (x)) // true

The intern function on strings in effect chooses a single String object amongst all
those that are equal (contain the same character sequence). However, I suggest that



210 CHAPTER 9. STRINGS, STREAMS, AND PATTERNS

you generally avoid such tricks except where speed is needed, and use the equals

and compareTo methods (and their ilk) for comparing strings.

9.2.4 String Hashing

The hashCode function is a hashing function that facilitates the creation of search
structures for strings. Because it depends only on the characters in the string, it
has the necessary property for all hash functions, that

S0.hashCode()==S1.hashCode() if S0.equals(S1)}

for strings S0 and S1. You might think that the function described in the documen-
tation comment is slow to compute, but because 31 = 25 − 1, the following fairly
inexpensive function computes the same value:

/** Compute S.hashCode () */

public static int hashCode (String s) {

int r;

r = 0;

for (int i = 0; i < s.length (); i += 1)

r = (r<<5) - r + s.charAt (i);

return r;

}

9.3 StringBuilders

You can think of a StringBuilder as a mutable (modifiable) String1. Use them to
build up strings quickly (that is, without having to create a new object each time
you add a character). In fact, the Java system itself uses StringBuilders behind
the scenes to implement the ‘+’ operator on Strings.

For example, suppose you wanted to take an array of integers and create a
String consisting of those integers separated from each other by slashes (’/’). That
is, you’d like

join (new int[] { 42, -128, 70, 0 }) to produce "42/-128/70/0"

Here’s one approach:

public static String join (int[] A) {

StringBuilder result = new StringBuilder ();

for (int i = 0; i < A.length; i += 1) {

if (i > 0)

1The StringBuilder class is new with Java 1.5. It is essentially identical to an older class,
StringBuffer, but its methods are significantly faster because they don’t attempt to deal with
situations where multiple threads try to operate on the same StringBuilder simultaneously (such
simultaneous operations are free to blow up in arbitrary ways). This makes perfect sense, since
one seldom intends to have more than one thread add text to any given StringBuilder.
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result.append (’/’);

result.append (A[i]);

}

return result.toString ();

}

9.4 Readers, Writers, Streams, and Files

At some point, useful programs communicate with the outside world. While graph-
ical user interfaces can be useful for interaction, there is a great deal of communi-
cation that can be described simply as the transmission of a sequence of characters,
bytes, bits, or generally symbols from some finite alphabet. When your browser
requests a Web page, for example, what actually happens under the hood is that
it codes its request as a stream of characters and receives in return a stream of
characters, which it then interprets as fancily formatted page. To the programs
that manipulate them, everything from Java source programs to Microsoft Word
documents to error messages written on your screen look like streams of characters.
So it’s not surprising to find that the Java library contains numerous classes and
interfaces dedicated to several forms of the abstract notion of “a stream of symbols.”

This area is an instance of where object-oriented programming languages can be
useful. The problem is that their are many potential sources and destinations for
streams of characters, but the programs that deal with those characters (interpret
or produce them) are indifferent to their source, and might be useful for streams of
many different origins. As with other situations of this sort, we react by defining an
abstraction that captures just those universal characteristics of a “stream of charac-
ters” that programs need and expressing this abstraction within our programming
language as some kind of interface.

An obvious question to ask is why a “stream of characters” should be anything
other than an “array of characters” or “list of characters.” What justification is
there for a new concept? There are a couple of reasons:

• There is not necessarily a way to know the length of a stream of characters.
Indeed, it need not have any finite length a priori.

• It is the nature of an array or list that one always has access to its entirety.
There is no notion of “finishing with” element k of a list; if you accessed it
once, your program is perfectly entitled to access it again. The implementa-
tion is required to keep all data in the an array or list available, so that the
size of a program becomes proportional to the amount of data it processes.
Needless to say, this is a problem in the case of input to a program that runs
indefinitely. However, it is also an efficiency issue for programs that access
data sequentially, and don’t need to go back to element k after they’ve finished
with it.

In Java, the situation is rather complicated, because the language and its library
have been through a number of major revisions, each one of which seems to have
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package java.lang;

public final class StringBuilder

implements java.io.Serializable, CharSequence {

/* Unless otherwise noted, the following routines will throw a

* NullPointerException if given a null argument and

* IndexOutOfBoundsException if a non-existent portion of a String

* or StringBuilder is referenced. */

/* Constructors */

/** An empty (length() == 0) StringBuilder. */

public StringBuilder();

/** A new StringBuilder whose initial contents are INIT */

public StringBuilder(String init);

/* Accessors */

/** The current length of this. */

public int length();

/** Character #K of this (numbering starts at 0). */

public char charAt(int k);

/** The String whose characters are charAt(b)..charAt(e-1). */

public String substring(int b, int e);

/** Same as substring(b, length()). */

public String substring(int b);

/** Sets DEST[D0] to charAt(B0), DEST[D0+1] to charAt(B0+1), ...

* up but not including charAt(END0). Exception if DEST is

* null or not big enough. */

public void getChars(int b0, int end0, char[] dest, int d0);

/** The contents of this as a String. (Further changes to this

* StringBuilder don’t affect the String.) */

public String toString();

Continues. . .

Figure 9.2: The class StringBuilder, part 1. Excludes bodies and deprecated
(obsolete) functions.
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/* Modifiers */

/** Insert X into this StringBuilder, putting its first character

* at position K (0 <= K <= length()). Move the original

* characters starting at K to the right to make room, and

* increase the length as needed. */

public StringBuilder insert(int k, String x);

/** Each remaining insert operation, insert(k, ARGS), is

* equivalent to insert(k, String.valueOf(ARGS)). */

public StringBuilder insert(int k, char x);

public StringBuilder insert(int k, double x);

public StringBuilder insert(int k, float x);

public StringBuilder insert(int k, int x);

public StringBuilder insert(int k, long x);

public StringBuilder insert(int k, boolean x);

public StringBuilder insert(int k, Object obj);

public StringBuilder insert(int k, char[] C, int k0, int len);

public StringBuilder insert(int k, char[] C);

/** The operations append(ARGS) are all equivalent to

* insert(length(), ARGS) */

public StringBuilder append(char x);

public StringBuilder append(double x);

public StringBuilder append(float x);

public StringBuilder append(int x);

public StringBuilder append(long x);

public StringBuilder append(boolean x);

public StringBuilder append(Object x);

public StringBuilder append(String x);

public StringBuilder append(char[] C, int k0, int len);

public StringBuilder append(char[] C);

Continues. . .

Figure 9.2, continued: The class StringBuilder, part 2.
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/** Remove the characters at positions START..END-1 from this

* StringBuilder, moving the following characters over and

* decrementing the length appropriately. Return this. */

public StringBuilder delete(int start, int end);

/** Same as delete(k, k+1) */

public StringBuilder deleteCharAt(int k);

/** Same as delete(START, END).insert(START, X) */

public StringBuilder replace(int start, int end, String x);

/** Reverse the sequence of characters in this; return this. */

public StringBuilder reverse();

/** Causes charAt(K) to be C. Exception if charAt(K) would cause

* an exception */

public void setCharAt(int k, char c);

/** Causes length() to be LEN. If len0 is the previous length,

* then charAt(k) is unchanged for 0 <= k < len0, and

* charAt(k)==0 for len0 <= k < LEN. */

public void setLength(int len);

}

Figure 9.2, continued: The class StringBuilder, part 3.
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taken a different approach to the problem. The result is that the current library
contains all the solutions of its prior versions, leading to quite a bit of redundancy
and confusion. We’ll try to sort this out by picking and choosing our topics and
concentrating on how to do useful things.

9.4.1 Input

The classes handling input in Java are loosely organized as follows:

• The abstract class java.io.InputStream represents a stream of bytes.

• A large number of concrete classes implement InputStream. In particu-
lar, these include java.io.FileInputStream, which produces the contents
of a file as a stream of bytes. The standard input (which by default is the
stream of data you type at the terminal) is presented to your program as an
InputStream (called System.in), although the language is silent as to which
concrete implementation it is.

• The abstract class java.io.Reader represents a stream of chars.

• There are large number of concrete implementations of Reader, including:

java.io.InputStreamReader takes an InputStream and presents it as a
Reader.

java.io.StringReader takes a String and presents its characters as a Reader.

java.io.BufferedReader is an implementation of Reader that takes any
kind of Reader and makes it into a more efficient one by reading large
segments at a time.

java.util.Scanner is a class that takes a Reader or an InputStream and
delivers its characters clumped into useful tokens (see §9.6).

For example, a program that reads words from the standard input might set things
up as follows:

import java.io.*;

import java.util.Scanner;

class WordReader {

public static void main (String[] args) {

Scanner input = new Scanner (System.in);

processWords (input);

}

...

after which, the next method in input will deliver words from the input, one at a
time, as described in §9.6.

Sometimes, you’ll instead want to fetch the input from a named file. For exam-
ple, you might want to run your program like this:
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java DoMyTaxes tax-2004.dat

and have it mean that your program is to read its input from the file named
tax-2004.dat. To get this effect, you could write:

import java.io.*;

import java.util.Scanner;

public class DoMyTaxes {

public static void main (String[] args) {

try {

Scanner input = new Scanner (new FileInputStream (args[0]));

processTaxes (input);

} catch (FileNotFoundException e) {

System.err.println ("Could not open file " + args[0]);

System.exit (1);

}

}

...

Many programs allow you to take input either way, so that plain

java DoMyTaxes

reads input from the terminal. For this, we put the two cases above together:

import java.io.*;

import java.util.Scanner;

public class DoMyTaxes {

public static void main (String[] args) {

try {

Scanner input;

if (args.length == 0)

input = new Scanner (System.in);

else

input = new Scanner (new FileInputStream (args[0]));

processTaxes (input);

} catch (FileNotFoundException e) {

System.err.println ("Could not open file " + args[0]);

System.exit (1);

}

}

...

Finally, some programs allow you the option of putting the input directly onto
the command line, so that args[0] isn’t just the name of the input; it is is the
input:
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import java.io.*;

import java.util.Scanner;

public class DoCommands {

public static void main (String[] args) {

Scanner input = new Scanner (new StringReader (args[0]));

processCommands (input);

}

...

9.4.2 Readers and InputStreams

The classes Reader and InputStream are abstract. They do not, in and of them-
selves, define any particular source of input. In the examples above, think of
FileInputStream and StringReader as types of vacuum cleaners. A Scanner

is an attachment that one can place on either of these. The types Reader and
InputStream are like standard nozzle shapes: you can attach a Scanner to any
kind of nozzle that conforms to Reader or InputStream.

Thus, InputStream describes a family of classes that support the following meth-
ods (among others):

read() Return the next byte of input (as an int in the range 0–255) or -1 if at the
end.

read(b, k, len) where b is an array of bytes, reads at most len bytes into b[k],
b[k+1], ... and returns the number read. This method is here for efficiency;
it is often faster to read many bytes at once.

close() shuts down the stream. Such an operation is often necessary to tell the
system when input is no longer needed, since it may otherwise have to consume
time or space keeping input available.

mark(n) and reset() respectively make a note of the program’s current place in
the input and “rewind” the input to the last mark (assuming that no more than
n characters have been read since). Depending on the kind of InputStream,
they do not always work. So. . .

markSupported() is true iff an InputStream allows marking.

The Reader class is almost the same, but deals in chars rather than bytes.

It might occur to you that it would probably be rather clumsy to have to write
your program using just read. Quite true: you will normally attach something
more useful (typically a Scanner in this class) to your Readers or InputStreams,
rather than using them directly. On the other hand, you do have to be familiar
with these classes if you wish to create a new kind of input source and want it
to be “plug-to-plug compatible” with existing classes that attach to Readers and
InputStreams.
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9.4.3 Output

The classes handling output in Java are roughly analogous to those for input, but
with data going in the “opposite direction:”

• The abstract class java.io.OutputStream absorbs a stream of bytes.

• Numerous concrete classes implement OutputStream, notably:

java.io.FileOutputStream writes its stream of bytes into a file.

java.io.BufferedOutputStream collects its stream of bytes and feeds it to
another OutputStream in chunks, for efficiency.

java.io.PrintStream adds methods to OutputStream that make it easy to
write things such as strings and numbers in their printed forms. The
standard output and standard error output streams of a program are both
PrintStreams. Generally, PrintStreams are set up to send their streams
of bytes to another OutputStream (such as a FileOutputStream).

• The abstract class java.io.Writer absorbs a stream of chars.

• Concrete implementations of Writer include:

java.io.OutputStreamWriter converts its stream of chars that it receives
into a stream of bytes and gives it to an OutputStream.

java.io.StringWriter collects its stream of chars into a String that you
can extract at any time with toString.

java.io.BufferedWriter is analogous to BufferedOutputStream, but con-
nects to another Writer and deals in chars.

java.io.PrintWriter is analogous to PrintStream.

9.4.4 PrintStreams and PrintWriters

Especially when creating output intended for human consumption, writing things
one character at a time is rather clumsy. The PrintStream and PrintWriter

classes in java.io are intended to make this more convenient. Both of these have
a set of print and println methods that convert their argument to a String and
then write its characters. In println method, furthermore, additionally appends
an end-of-line sequence, so that the next output starts on a new line. Together
with String concatenation (‘+’), they allow you to write just about anything. For
example:

System.out.println ("Average of " + N + " inputs: " + mean

+ ", standard deviation: " + sigma);

With Java 2, version 1.5, you have the alternative of using the powerful format
methods as well:
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System.out.format ("Average of %d inputs: %.2f, standard deviation: %.2f%n",

N, mean, sigma);

which has the same effect as

System.out.print

(String.format ("Average of %d inputs: %.2f, standard deviation: %.2f%n",

N, mean, sigma));

9.5 Regular Expressions and the Pattern Class

So far, all the means we’ve seen for breaking up a string or other stream of characters
have been quite primitive, which can lead to some rather involved programs to do
simple things. Consider the problem of interpreting the command-line arguments
to a program. A certain program might allow the following parameters

--output-file=FILE --output=FILE
--verbose

--charset=unicode --charset=ascii

--mode=N

where FILE is any non-empty sequence of characters and N is an integer. That is,
a user might start this program with commands like

java MyProgram --output-file=result.txt --charset=unicode

java MyProgram --verbose

Suppose we want to write a function to test whether a given string has one of these
formats. Here’s a brute-force approach:

/** Return true iff OPTION is a valid command argument. */

public static boolean validArgument (String arg) {

return (arg.startsWith ("--output-file=") && arg.length () > 14)

|| (arg.startsWith ("--output=") && arg.length () > 9)

|| arg.equals ("--verbose")

|| arg.equals ("--charset=unicode")

|| arg.equals ("--charset=ascii")

|| (arg.startsWith ("--mode=") && isInteger (arg));

}

static boolean isInteger (String numeral) {

for (int i = 0; i < numeral.length (); i += 1)

if (! Character.isDigit (numeral.charAt (i)))

return false;

return true;

}
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Clearly, it would be nice not to have to write so much. In fact, we can write the
body of validArgument much more succinctly like this:

final static String argumentPattern =

"--output(-file)?=.+|--verbose|--charset=(unicode|ascii)"

+ "|--mode=\\d+";

public static boolean validArgument (String arg) {

return (arg.matches (argumentPattern));

}

(Here, we used a separate constant declaration for the pattern string and used
‘+’ to break it across lines for better readability. We could have dispensed with
the definition of argumentPattern and simply written the pattern string into the
return statement.)

Here, matches method on Strings treats argumentPattern as a regular expres-
sion, which is a description of a set of strings. To match a regular expression is to
be a member of this set.

In the package java.util.regex, Java provides classes Pattern and Matcher,
which provide, respectively, a highly augmented version of regular expression, and a
kind of engine for matching strings to them. Although the term “regular expression”
is often used to describe things like Pattern, it is misleading. Formal language the-
ory introduced regular expressions long ago, in a form that is much more restricted
than Java’s. Since the term has been appropriated, we’ll use words like “pattern”
(or “Pattern”), or “regexp” instead. For a complete description of Java patterns,
see the documentation for the classes Pattern and Matcher For now, we’ll just
look at some of the most common constructs, summarized in Table 9.4.

The most basic regular expressions contain no special characters, and denote
simply a literal match. For example, the two expressions

s.equals ("--verbose") s.matches ("--verbose")

have the same value. In set language, we say that the regular expression --verbose

denotes the set containing the single string "--verbose".

Other forms of regular expression exist to create sets that contain more than
one string. For example, to see if a one-character string, s, consists of a single vowel
(other than ‘y’), you could write either

s.matches ("a|e|i|o|u") or s.matches ("[aeiou]")

while to check for a (lower-case) consonant, you’ll need

s.matches ("[b-df-hj-np-tv-z]")

To test for a word starting with single consonant followed by one or more vowels,
you would write

s.matches ("[b-df-hj-np-tv-z][aeiou]+")
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Regular Matches
Expression

x x, if x is any character not described below
[c1c2 · · ·] Any one of the characters c1, c2, . . . . Any of the ci

may also have the form x-y, meaning “any single
character ≥ x and ≤ y.”

[^c1c2 · · ·] Any single character other than c1, c2, . . . . Here,
too, you can use x-y as short for all characters
≥ x and ≤ y.

. Any character except (normally) line terminators
(newline characters or other character sequences
that mark the end of a line).

\s Any whitespace character (blank, tab, newline,
etc.).

\S Any non-whitespace character.
\d Any digit.

^ Matches zero characters, but only at the beginning
of a line or string.

$ Matches zero characters, but only at the end of a
line or string.

(R) Matches the same thing as R. Parentheses serve as
grouping operators, just as they do in arithmetic
expressions.

R* Any string that can be broken into zero or more
pieces, each of which matches R. This is called the
closure of R.

R+ Same as RR∗. That is, it matches any string that
can be broken into one or more pieces, each of
which matches R.

R0R1 Any string that consists of something that
matches R0 immediately followed by something
that matches R1.

R0|R1 Any string that matches either R0 or R1.

Table 9.4: Common regular expressions. Lower-case italic letters denote single
characters. R, R0, R1, etc. are regular expressions (the definitions are recursive).
As with arithmetic expressions, operators have precedences, and are listed here
in decreasing order of precedence. Thus, ‘ab|xy*’ matches the same strings as
‘(ab)|(x(y*))’ rather than ‘a(b|x)(y*)’ or ‘((ab)|(xy))*’.
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Finally, to check that s consists of a series of zero or more such words, each one
followed by any amount of whitespace, you could write

s.matches ("([b-df-hj-np-tv-z][aeiou]+\\s+)*")

Here, I had to write two backslashes to create a ‘\s’ because in Java string literals,
a single backslash is written as a double backslash.

So far, I have been writing strings and calling them regular expressions. The
whole truth is somewhat more complicated. The Java library defines two classes:
Pattern and Matcher, both of which are in the package java.util.regex. The
relationship is suggested in the following program fragment:

/* String representing a regular expression */

String R = "[b-df-hj-np-tv-z][aeiou]+";

String s = "To be or not to be";

/* A Pattern representing the same regular expression */

Pattern P = Pattern.compile (R);

/* An object that represents the places where P matches s or

parts of it. */

Matcher M = P.matcher (s);

if (M.matches ())

System.out.format ("P matches all of ’%s’%n", s);

if (M.lookingAt ())

System.out.format ("P matches the beginning of ’%s’%n", s);

if (M.find ())

/* M.group () is the piece of s that was matched by the last

matches, lookingAt, or find on M. */

System.out.format ("P first matches ’%s’ in ’%s’%n", M.group (), s);

if (M.find ())

System.out.format ("P next matches ’%s’ in ’%s’%n", M.group (), s);

if (M.find ())

System.out.format ("P next matches ’%s’ in ’%s’%n", M.group (), s);

which, for the given value of s, would print:

P first matches ’be’ in ’To be or not to be’

P next matches ’no’ in ’To be or not to be’

P next matches ’to’ in ’To be or not to be’

A Pattern is a “compiled” regular expression, and a Matcher is something that
finds matches for a given Pattern inside a given String. The reason for wanting
to compile a regular expression into a Pattern is mostly one of efficiency: it takes
time to interpret the language of regular expressions and to convert it into a form
that is easy to apply quickly to a string. The reason to have a Matcher class (rather
than just writing something like P.find (s) is that you will often want to look for
multiple matches for a pattern in s, and to see just what part of s was matched.
Therefore, you need something that keeps track of both a regular expression, a
string, and the last match within that string. The expression we used previously,
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s.matches ("([b-df-hj-np-tv-z][aeiou]+\\s+)*")

where s is a String, is equivalent to

Pattern.compile ("([b-df-hj-np-tv-z][aeiou]+\\s+)*").matcher (s).matches ()

We can use complex regular expressions to do some limited parsing—breaking
a string into parts. For example, suppose that we want to divide a time and date
in the form “mm/dd/yy hh:mm:ss” (as in “3/7/02 12:36:12”) into its constituent
parts. The means to do so is illustrated here:

Pattern daytime = Pattern.compile ("(\\d+)/(\\d+)/(\\d+)\s+(\\d+):(\\d+):(\\d+)");

Matcher m = daytime.matcher ("It is now 3/7/02 12:36:12.");

if (m.find ()) {

System.out.println ("Year: " + m.group(3));

System.out.println ("Month: " + m.group(1));

System.out.println ("Day: " + m.group(2));

System.out.println ("Hour: " + m.group(4));

System.out.println ("Minute: " + m.group(5));

System.out.println ("Second: " + m.group(6));

}

That is, after any kind of matching operation (in this case, find), m.group(n) re-

turns whatever was matched by the regular expression in the nth pair of parentheses
(counting from 1), or null if nothing matched that group.

Regular expressions and Matchers provide many more features than we have
room for here. For example, you can control much more closely how many repe-
titions of a subpattern match a given string. You can not only find matches for
patterns, but also conveniently replace those matches with substitute strings. The
intent of this section was merely to suggest what you’ll find in the on-line documen-
tation for the Java library.

9.6 Scanner

One application for text pattern matchers is in reading text input. A Scanner,
found in package java.util, is a kind of all-purpose input reader, similar to a
Matcher. In effect, you attach a Scanner to a source of characters—which can be
a file, the standard input stream, or a string, among other things—and it acts as a
kind of “nozzle” that spits out chunks of the stream as Strings. You get to select
what constitutes a “chunk.” For example, suppose that the standard input consists
of words alternating with integers, like this:

axolotl 12 aardvark 50

bison

16

cougar 6

panther 2 gazelle 100
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and you want to read in these data and, let’s say, print them out in a standard
form and find the total number of animals. Here’s one way you might do so, using
a default Scanner:

import java.util.*;

class Wildlife {

public static void main (String[] args) {

int total;

Scanner input = new Scanner (System.in);

total = 0;

while (input.hasNext ()) {

String animal = input.next ();

int count = input.nextInt ();

total += count;

System.out.format ("%-15s %4d%n", animal, count);

}

System.out.format ("%-15s %4d%n", "Total", total);

}

}

This program first creates a Scanner out of the standard input (System.in). Each
call to the next first skips any delimiter that happens to be there, and then returns
the next token from the input: all characters up to and not including the next
delimiter or the end of the input. Each call to nextInt is the same, but converts
its token into an int first (and causes an error if the next token is not an int).
Finally, hasNext returns true iff there is another token before the end of the input.
For the given input, the program above prints

axolotl 12

aardvark 50

bison 16

cougar 6

panther 2

gazelle 100

Total 186

By default, the delimiter used is “any span of whitespace,” which is defined
as one or more characters for which the method Character.isWhitespace returns
true. You can change this. For example, to allow comments in the input file above,
like this:

# Counts from sector #17

axolotl 12 aardvark 50

bison
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16

cougar 6 # NOTE: count uncertain

panther 2 gazelle 100

insert the following line immediately after the definition of input:

input.useDelimiter (Pattern.compile ("(\\s|\#.*)+"));

Just as with a Matcher, you can set a Scanner loose looking for a token that
matches a particular pattern (rather than looking for whitespace that matches).
So, for example, to skip to the next point in the input file that reads “Chapter N ,”
where N is an integer, you could write

if (input.findWithinHorizon ("Chapter \\d+", 0) != null) {

/* What to do if you find a new chapter */

}

The second argument limits the number of characters searched; 0 means that there
is no limit. This method returns the next match to the pattern string, or null if
there is none.

Again, this section merely suggests what Scanners can do. The on-line docu-
mentation for the Java library contains the details.
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Chapter 10

Generic Programming

Inheritance gives us one way to re-use the contents of a class, method, or interface
by allowing it to mold itself to a variety of different kinds of objects having similar
properties. However, it doesn’t give us everything we might want.

For example, the Java library has a selection of useful classes that, like arrays,
represent indexed sequences of values, but are expandable (unlike an array), and
provide, in addition, a variety of useful methods. They are all various implementa-
tions of the interface List. One of these classes is ArrayList, which you might use
as shown in the example here. Suppose we have a class called Person, designed to
hold information such as name, Social-Security Number, and salary:

public class Person {

public Person (String name, String SSN, double salary) {

this.name = name; this.SSN = SSN; this.salary = salary;

}

public double salary;

public String name, SSN;

}

We can create a list of Persons using a program along the following lines:

ArrayList people = new ArrayList ();

while (/*( there are more people to add )*/) {

Person p = /*( the next person )*/;

people.add (p);

}

That is, .add expands the list people by one object (which goes on the end). Then
we could compute the total payroll like this:

double total;

total = 0.0;

for (int i = 0; i < people.size (); i += 1) {

total += ((Person) people.get (i)).salary;

}

227
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That is, people.get(i) is sort of like A[i] on arrays. But there’s an odd awkward-
ness here: if people were an array, we’d write people[i].salary. What’s with
the (Person) in front? It is an example of a cast, a conversion, which we’ve seen in
other contexts. For reference types, a cast (C) E means “I assert that the value
of E is a C, and if it isn’t, throw an exception.”

To understand why we need this cast, we have to look at the definition of
ArrayList, which (effectively) contains definitions like this1:

public class ArrayList implements List {

/** The number of elements in THIS. */

public int size () { ... }

/** The Ith element of THIS. */

public Object get (int i) { ... }

/** Append X as the last element in THIS. (Always returns true). */

public boolean add (Object x) { ... }

...

In order to make the class work on all kinds of objects, the type returned by get

and taken by add is Object, the supertype of all reference types. Unfortunately,
the Java compiler insists on knowing, for an expression such as someone.salary,
that someone is actually going to have a salary. If all it knows is that people.get
(i) is an Object, then it has no idea whether it is a kind of Object with a salary.
Hence the need for the cast to Person. When you write

((Person) people.get (i)).salary

you are saying “I claim that the result of people.get (i) is a Person” and as a
result, the Java system will check that the value returned by get really is a Person

before attempting to take its salary. Furthermore, the compiler will proceed under
the assumption that the value is a Person, and so must indeed have a salary field.

10.1 Simple Type Parameters

From your point of view, supplying this extra cast to Person, while not terribly
burdensome, is redundant, adds to “code clutter,” and also delays the detection
of certain mistakes until the program executes. The only obvious way around it
is unsatisfactory: creating new versions of ArrayList for every possible kind of
element. Inheritance is no help, as it does not change the signatures (argument and
return types) of methods. With Java 2, version 1.5, however, there is a way to say
what you mean here—that people is a list of Persons—using generic programming:

1The return value of add indicates whether the operation changed the list, and is therefore
useless in lists, where the add operation always changes the list. It’s there because List is just one
subtype of an even larger family of types in which the add method sometimes does not change the
target object.
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ArrayList<Person> people = new ArrayList<Person> ();

while (/*( there are more people to add )*/) {

Person p = /*( the next person )*/;

people.add (p);

}

...

double total;

total = 0.0;

for (int i = 0; i < people.size (); i += 1) {

total += people.get (i).salary;

}

To make this work, the definition of ArrayList actually reads:

public class ArrayList<Item> implements List<Item> {

/** The number of elements in THIS. */

public int size () { ... }

/** The Ith element of THIS. */

public Item get (int i) { ... }

/** Append X as the last element in THIS. (Always returns true). */

public boolean add (Item x) { ... }

...

}

The identifier Item here is a type variable, meaning that it ranges over reference
types (interfaces, classes, and array types). The clause “class ArrayList<Item>”
declares Item as a formal type parameter to the class ArrayList. Finally, ArrayList<Person>
is a parameterized type in which Person is an actual type parameter. As you can
see, you can use ArrayList<Person> just as you would an ordinary type—in dec-
larations, implements or extends clauses, and with new, for example.

As another example, the Java library also defines the type java.util.HashMap,
one of a variety of classes implementing java.util.Map, which is intended as a kind
of dictionary type. Here is an example in which we take our array of Persons from
above and arrange to be able to retrieve any Person record by name:

Map<String, Person> dataBase = new HashMap<String, Person> ();

for (int i = 0; i < people.size (); i += 1) {

Person someone = people.get (i);

dataBase.put (someone.name, someone);

}

Having set up dataBase in this fashion, we can now write little programs like this
to retrieve employee records:
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/** Read name queries from INPUT and respond by printing associated

* information from DATA. Each query is a name (a string). The

* end of INPUT or a single period (.) signals the end. */

public static void doQueries (Scanner input, Map<String, Person> data)

{

while (input.hasNext ()) {

String name = input.next ();

if (name.equals ("."))

break;

Person info = data.get (name);

System.out.format ("Name: %s, SSN: %s, salary: $%6.2f%n",

name, info.SSN, info.salary);

}

}

The definition of HashMap needed to get this effect might look like this2:

public class HashMap<Key, Value> implements Map<Key, Value> {

...

/** The value mapped to by K, or null if there is none. */

public Value get (Object k) { ... }

/** Cause get(K) to become V, returning the previous value of

* get(K). Values for all other keys are unchanged. */

public Value put (Key k, Value v) { ... }

}

The difference from the ArrayList example is that we have more than one type
parameter.

10.2 Type Parameters on Methods

Suppose that you’d like to generalize the following method:

/** Set all the items in A to X. */

public void set (String[] A, String x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

This works for arrays of Strings, but nothing else. The rules of Java allow you to
write

2You might wonder why the argument to get can be any Object. Since the argument to put,
which is what allows you to add things to the map, is Key, get(x) will return null whenever x does
not have type Key. This is harmless, however, and the designers, I guess, decided to be lenient.
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/** Set all the items in A to X. */

public static void set2 (Object[] A, Object x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

because all arrays are subtypes of Object[]. However you won’t find out until
execution time if you have supplied an argument for x that doesn’t have a matching
type. With type parameters, however, you can write

/** Set all the items in A to X. */

public static <AType> void set3 (AType[] A, AType x)

{

for (int i = 0; i < A.length; i += 1)

A[i] = x;

}

Here AType is a formal type parameter of the method , which you can now call with
any kind of array. The compiler will insure that you have supplied the right kind
of value for x.

10.3 Restricting Type Parameters

The useful class java.util.Collections contains a number of methods that work
on lists, among them one for sorting a list. With what you saw in the last section,
you might think that this would suffice to sort any kind of list:

public static <T> void sort(List<T> list) {

...

}

Unfortunately, not quite. In order to sort anything, you have to know what it means
for one item to be less than another, and there is no general method for determining
such a thing. That is, somewhere in the body of sort, there will presumably have
to be some statement like

if (list.get (i).lessThan (list.get (j))) etc.

but there is no such general lessThan method that works on all types.
By convention, Java classes can define an ordering upon themselves by imple-

menting the java.lang.Comparable interface, which looks like this:

public interface Comparable<T> {

/** Returns a value < 0 if THIS is ‘‘less than’’ Y, > 0 if THIS is

* greater than Y, and 0 if equal. */

int compareTo(T y);

}
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So we really want to say that sort accepts a type parameter T, but only if T

implements the Comparable interface. Here’s one way to write it:

public static <T extends Comparable<T>> void sort(List<T> list) {

...

}

we call the “extends Comparable<T>” clause a type bound.

10.4 Wildcards

Sometimes, it really doesn’t matter what kinds of items are stored in your List.
For example, because toString is a method that works on all objects, if you want
a method to print them all in a numbered list,

public static <T> void printAll (List<T> list) {

for (int i = 1; i <= list.size (); i += 1)

System.out.println (i + ". " + list.get (i));

}

(The ‘+’ operation on Strings allows you to concatenate any Object to a String;
it does so by calling the toString on that Object.) However, you never really use
the name T for anything. Therefore, you can use this shorthand instead:

public static void printAll (List<?> list) {

for (int i = 1; i <= list.size (); i += 1)

System.out.println (i + ". " + list.get (i));

}

You can restrict this wildcard type variable, just as you can named type variables:

public static void printAllNames (List<? extends Person> list) {

for (int i = 1; i <= list.size (); i += 1)

System.out.println (i + ". " + list.get (i).name);

}

10.5 Generic Programming and Primitive Types

One possibly unfortunate characteristic of Java is that primitive types (boolean,
long, int, short, byte, char, float, and double) are completely distinct from
reference types. Everything other than a primitive value is an Object (that is, all
reference types are subtypes of Object).

Alas, all the examples of useful classes from the Java library that we’ve seen deal
with Objects: you can have lists of Objects and maps from Objects to Objects,
but you can’t use the same classes to get lists of ints. The language is not set up
to provide such a thing without essentially copying of these classes from the library
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and making changes to them by hand—one for each primitive type. The designers
thought this was not a great idea and came up with a compromise instead.

Package java.lang of the Java library contains a set of wrapper classes in
java.lang corresponding to each of the primitive types:

Primitive =⇒ Wrapper Primitive =⇒ Wrapper

long =⇒ Long char =⇒ Character

int =⇒ Integer boolean =⇒ Boolean

short =⇒ Short float =⇒ Float

byte =⇒ Byte double =⇒ Double

The wrapper classes turned out to be a convenient dumping ground for a variety
of static methods and constants associated with the primitive types. For example,
there are constants MAX_VALUE and MIN_VALUE defined in the wrappers for numeric
types, so that Integer.MAX VALUE is the largest possible int value. There are also
methods for parsing String values containing numeric literals back and forth to
primitive types.

The original reason for introducing these classes, however, was so that their
instances could contain a value of the corresponding primitive type (commonly
called wrapping or boxing the value.) That is,

Integer I = new Integer (42);

int i = I.intValue (); // i now has the value 42.

There is no way to change the intValue of a given Integer object once it is created;
Integers are immutable just like primitive values. Since Integer is a reference type,
however, we can store its instances in an ArrayList, for example:

/** A list of the prime numbers between L and U. */

public List<Integer> primes (int L, int U)

{

ArrayList<Integer> primes = new ArrayList<Integer>();

for (int x = L; x < U; x += 1)

if (isPrime (x))

primes.add (new Integer (x));

return primes;

}

These wrappers let us use the library classes for primitive types, but the syntax
is clumsy, especially if we want to perform primitive operations such as arithmetic:

/** Add X to each item in L. */

public void increment (List<Integer> L, int x)

{

for (int i = 0; i < L.size (); i += 1)

L.set (i, new Integer (L.get (i).intValue () + x));

}
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So in version 1.5 of Java 2, the designers introduced automatic boxing and unboxing
of primitive values. Basically, the idea is that a primitive value will be implicitly
converted (coerced) to a corresponding wrapper value when needed, and vice-versa.
For example:

Integer x = 42; // is equivalent to Integer x = new Integer (42)

int y = x; // is equivalent to int y = x.intValue ();

Now we can write

/** Add X to each item in L. */

public void increment (List<Integer> L, int x)

{

for (int i = 0; i < L.size (); i += 1)

L.set (i, L.get (i) + x);

}

So now it at least looks like we can write classes that deal with all types of value,
primitive and reference. Nothing, alas, is free. The boxing coercion especially uses
up both space and time. For large and intensively used collections of values, it may
still be necessary to tune one’s program by building specialized versions of such
general-purpose classes.

10.6 Formalities

Templates intrude in several places in the syntax. Let’s take a look at the crucial
definitions we postponed in previous chapters.

TypeArguments: < ActualTypeArgument+, >

ActualTypeArgument:
ReferenceType
Wildcard

Wildcard: ? WildcardBoundsopt
WildcardBounds:

extends ReferenceType
super ReferenceType

TypeParameters: < FormalTypeParameter+, >

FormalTypeParameter: SimpleName TypeBoundsopt
TypeBounds: extends Type+&

TypeParameters introduce new names for type parameters of classes, interfaces, and
methods. They are like the formal parameters of a method. TypeArguments, on the
other hand, are like the expressions that you supply in method call. For example,
in this declaration from §10.1:

public class ArrayList<Item> implements List<Item> {

Cross references: ReferenceType 76, Type 76.
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...

}

the clause <Item> after ArrayList is a single-element TypeParameters, and the
<Item> after List is a TypeArguments.

A FormalTypeParameter defines a SimpleName to be a type that must be a
subtype of all the TypeBounds supplied. The scope of this declaration is whatever
class, interface, or method declaration includes it.

An ActualTypeArgument denotes some type that you are “plugging into” a For-
malTypeParameter , rather as you would pass a parameter to a method. Unlike
method calls, however, you are allowed to supply a Wildcard , or “don’t care” value
for such a parameter. Given a declaration such as

class Widget<T> {

private T x;

void g (T y) { x = y; }

T f () { return x; }

}

a declaration such as

Widget<?> w1;

means “w1 is a Widget, which has an f method that returns some type, but I’m not
going to tell you (the compiler) what that type is, so be ready for anything.” The
compiler, being conservative, will assume nothing about the value w1.f(), except,
of course, that it is some kind of Object.

If, on the other hand, I had written

Widget<? extends List<Integer>> w1;

I’d be telling the compiler that w1.f() returns some kind of List<Integer> (so that,
for example, it knows to allow expressions like w1.f().size() or w1.f().get(3)
+ 42). Finally, something like

Widget<? super Integer> w1;

tells the compiler that w1.g(3) is legal, since even though it doesn’t know what
static type w1.x has, it does know that it is a supertype of Integer.

Some shorthand. Declarations such as

ArrayList<Integer> primes = new ArrayList<Integer>();

are common enough that the repetition of Integer to the right of the assignment
becomes tedious. In recent versions of Java, fortunately, you are allowed to shorten
this in assignments and declarations where the type of the right-hand expression is
clear:

ArrayList<Integer> primes = new ArrayList<>();
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10.7 Caveats

Let’s face it, inheritance and type parameterization in Java are both complicated.
I’ve tried to finesse some of the complexity (for example, there are still a number
of generic-programming features that I haven’t discussed at all.) Here are a few
particular pitfalls it might be helpful to beware of.

Type hierarchy. A very common mistake is to think that, for example, because
String is a subtype of Object, that therefore ArrayList<String> must be a sub-
type of ArrayList<Object>. In fact, this is not the case. Actually, it’s not difficult
to see why. In Java, if C is a subtype of P , then anything you can do to a P you
can also do to a C. If L is an ArrayList<Object>, then you can write

Person someone = ...;

L.add (someone);

But clearly, you cannot do that to an ArrayList<String>; therefore you’d bet-
ter not be allowed to have L point to an ArrayList<String>, which means that
ArrayList<String> had better not be a subtype of ArrayList<Object> (nor vice-
versa).

Consequences of the implementation. You might be tempted to think that
ArrayList<Person> is a just new copy of ArrayList with Person substituted for
Item throughout. For a number of reasons, partly historical3, it’s really just a plain
ArrayLists under the hood and all varieties of ArrayList<T> for all T actually
run exactly the same code. During translation, however, the compiler enforces the
extra requirement that an ArrayList<Person> may only contain Persons. There
are a couple of noticeable consequences of this design that are frankly annoying. If
T is a type parameter, then

• You cannot use new T . For example, inside the definition of ArrayList, you
can’t write “new Item[...].”

• You cannot write X instanceof T .

• You cannot use T as the type of a static field.

[Advanced Question: See if you can figure out why these restrictions might exist.]

The restriction against using a type parameter in a new is bothersome. Suppose
you’d like to write:

class MyThing<T> {

private T[] stuff;

3These generic programming features were designed under stringent constraints. Backward com-
patibility, in particular, was an important goal. Old versions of ArrayList and other functions in
the Java library had no parameters, and Java’s designers did not want to have to force programmers
to rewrite all their existing Java programs.
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MyThing (int N) {

stuff = new T[N];

}

T get (int i) { return stuff[i]; }

}

It makes perfect sense, but doesn’t work, because you’re not allowed to use T with
new. Instead, write the following:

MyThing (int N) {

stuff = (T[]) new Object[N];

}

This is a terrible kludge, really, justified only by necessity. Your author feels dirty
just mentioning it. The code above would not work, for example, if you substituted
a real type, like String for the type variable T; at execution time, you would get an
error on the conversion to String[], because an array of Object is not an array of
String. The code above works only because the Java compiler “really” substitutes
Object for T inside the body of MyThing, and then inserts additional conversions
where needed. Perhaps it is advisable for the time being not to think about this
unfortunate glitch too much and hope the designers eventually come up with a
better solution!
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Chapter 11

Multiple Threads of Control

Sometimes, we need programs that behave like several separate programs, running
simultaneously and occasionally communicating. Familiar examples come from the
world of graphical user interfaces (GUIs) where we have, for example, a chess pro-
gram in which one part that “thinks” about its move while another part waits for its
user to resize the board or push the “Resign” button. In Java, such miniprograms-
within-programs are called threads. The term is short for “thread of control.” Java
provides a means of creating threads and indicating what code they are to execute,
and a means for threads to communicate data to each other without causing the
sort of chaos that would result from multiple programs attempting to make modi-
fications to the same variables simultaneously. The use of more than one thread in
a program is often called multi-threading; however, we also use the terms concur-
rent programming, and parallel programming, especially when there are multiple
processors each of which can be dedicated to running a thread.

Java programs may be executed on machines with multiple processors, in which
case two active threads may actually execute instructions simultaneously. However,
the language makes no guarantees about this. That’s a good thing, since it would
be a rather hard effect to create on a machine with only one processor (as most
have). The Java language specification also countenances implementations of Java
that

• Allow one thread to execute until it wants to stop, and only then choose
another to execute, or

• Allow one thread to execute for a certain period of time and then give another
thread a turn (time-slicing), or

• Repeatedly execute one instruction from each thread in turn (interleaving).

This ambiguity suggests that threads are not intended simply as a way to get paral-
lelism. In fact, the thread is a useful program structuring tool that allows sequences
of related instructions to be written together as a single, coherent unit, even when
they can’t actually be executed that way.

239
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package java.lang;

public interface Runnable {

/** Execute the body of a thread. */

void run();

}

public class Thread implements Runnable {

/** Minimum, maximum, and default thread priorities. */

public static final int

MIN_PRIORITY, NORM_PRIORITY, MAX_PRIORITY;

/** A new Thread with name NAME that will run

* the code in BODY.run() when started. */

public Thread(Runnable body, String name);

/** Same as Thread (BODY, some generated name) */

public Thread(Runnable body);

/** Same as Thread (null, NAME) */

public Thread(String name);

/** Same as Thread (this, some generated name) [that is,

* the Thread supplies its own run() routine.] */

public Thread();

/** Begin independent execution of the body of this

* Thread. Throws exception if this Thread has already

* started. */

public void start();

/** Inherited from Runnable. If this Thread provides

* its own body, this executes it. */

public void run();

/** The Thread that is executing the caller. */

public static native Thread currentThread();

/** Fetch (set) the name of this Thread. */

public final String getName();

public final void setName(String newName);

/** The (set) the current priority of this Thread. */

public final int getPriority();

public final void setPriority(int newPriority);

Continued on page 241.

Figure 11.1: The interface java.lang.Runnable and class java.lang.Thread. See
also §11.1.
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Class Thread continued from page 240.

/** Current interrupt state of this Thread. */

public boolean isInterrupted();

/** Causes this.isInterrupted() to become true. */

public void interrupt();

/** Resets this.isInterrupted() to false, and returns its

* prior value. */

public static boolean interrupted();

/** Causes CURRENT to wait until CURRENT.isInterrupted()

* or this thread terminates, or 10−3 · MILLIS+ 10−9 · NANOS
* seconds have passed. */

public final void join(long millis, int nanos)

throws InterruptedException;

/** Same as join (MILLIS, 0); join(0) waits forever. */

public final void join(long millis)

throws InterruptedException;

/** Same as join(0) */

public final void join() throws InterruptedException;

/** Causes CURRENT to wait until CURRENT.isInterrupted()

* or 10−3 · MILLIS+ 10−9 · NANOS seconds have passed. */

public static void sleep(long millis, int nanos)

throws InterruptedException;

/** Same as sleep(MILLIS, 0). */

public static void sleep(long millis)

throws InterruptedException;

}

Figure 11.2: Classjava.lang.Thread, continued.
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11.1 Creating and Starting Threads

Java provides the built-in type Thread (in package java.lang) to allow a program
a way to create and control threads. Figures 11.1–11.2 describe this class and the
Runnable interface as the programmer sees them. In the figure, CURRENT refers to
the Thread executing the call, also called Thread.currentThread().

There are essentially two ways to use it to create a new thread. Suppose that
our main program discovers that it needs to have a certain task carried out—let’s
say washing the dishes—while it continues with its work—let’s say playing chess.
We can use either of the following two forms to bring this about:

class Dishwasher implements Runnable {

Fields needed for dishwashing.
public void run () { wash the dishes }

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Dishwasher washInfo = new Dishwasher ();

Thread washer = new Thread (washInfo);

washer.start ();

}

play chess
}

}

Here, we first create a data object (washInfo) to contain all data needed for dish-
washing. It implements the standard interface java.lang.Runnable, which requires
defining a function run that describes a computation to be performed. We then cre-
ate a Thread object washer to give us a handle by which to control a new thread of
control, and tell it to use washInfo to tell it what this thread should execute. Call-
ing .start on this Thread starts the thread that it represents, and causes it to call
washInfo.run (). The main program now continues normally to play chess, while
thread washer does the dishes. When the run method called by washer returns,
the thread is terminated and (in this case) simply vanishes quietly.

In this example, I created two variables with which to name the Thread and
the data object from which the thread gets its marching orders. Actually, neither
variable is necessary; I could have written instead

if (dishes are dirty)
(new Thread (new Dishwasher ())).start ();

Java provides another way to express the same thing. Which you use depends
on taste and circumstance. Here’s the alternative formulation:
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class Dishwasher extends Thread {

Fields needed for dishwashing.
public void run () { wash the dishes }

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Thread washer = new Dishwasher ();

washer.start ();

// or just (new Dishwasher ()).start ();

}

play chess
}

}

Here, the data needed for dishwashing are folded into the Thread object (actually,
an extension of Thread) that represents the dishwashing thread.

When you execute a Java application (as opposed to an embedded Java program,
such as an applet), the system creates an anonymous main thread that simply calls
the appropriate main procedure. When the main procedure terminates, this main
thread terminates and the system then typically waits for any other threads you
have created to terminate as well.

11.2 A question of terminology

The fact that Java’s Thread class has the name it does may tempt you into making
the equation “thread = Thread.” Unfortunately, this is not correct. When I write
“thread” (uncapitalized in normal text font), I mean “thread of control”—an inde-
pendently executing instruction sequence. When I write “Thread” (capitalized in
typewriter font), I mean “a Java object of type java.lang.Thread.” The relation-
ship is that a Thread is an object visible to a program by which one can manipulate
a thread—a sort of handle on a thread. Each Thread object is associated with a
thread, which itself has no name, and which becomes active when some other thread
executes the start method of the Thread object.

A Thread object is otherwise just an ordinary Java object. The thread associated
with it has no special access to the associated Thread object. Consider a slight
extension of the Dishwasher class above:
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class SelfstartingDishwasher extends Dishwasher {

SelfstartingDishwasher () {

start ();

}

}

class MainProgram {

public static void main (String[] args) {

...

if (dishes are dirty) {

Thread washer = new SelfstartingDishwasher ();

// actually, we could just use

// new SelfstartingDishwasher ();

// and get an anonymous dishwasher, since we don’t

// refer to ’washer’ again.

}

play chess
}

}

Initially, the anonymous main thread executes the code in MainProgram. The
main thread creates a Thread (actually a SelfstartingDishwasher), pointed to
by washer, and then executes the statements in its constructor. That’s right: the
main thread executes the code in the SelfstartingDishwasher constructor, just
as it would for any object. While executing this constructor, the main thread
executes start(), which is short for this.start(), with the value this being
that of washer. That activates the thread (lower case) associated with washer,
and that thread executes the run method for washer (inherited, in this case, from
Dishwasher). If we were to define additional procedures in SelfstartingDishwasher,
they could be executed either by the main thread or by the thread associated with
washer. The only magic about the type Thread is that among other things, it allows
you to start up a new thread; otherwise Threads are ordinary objects.

Just to cement these distinctions in your mind, I suggest that you examine the
following (rather perverse) program fragment, and make sure that you understand
why its effect is to print ‘true’ a number of times. It makes use of the static
(class) method Thread.currentThread, which returns the Thread associated with
the thread that calls it. Since Foo extends Thread, this method is inherited by Foo.

// Why does the following program print nothing but ‘true’?

class Foo extends Thread {

public void run () {

System.out.println (Main.mainThread != currentThread());

}

public void printStuff () {

Thread mainThr = Main.mainThread;
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System.out.println (mainThr == Thread.currentThread ());

System.out.println (mainThr == Foo.currentThread ());

System.out.println (mainThr == this.currentThread ());

System.out.println (mainThr == currentThread ());

}

}

class Main {

static Thread mainThread;

public static void main (String[] args) {

mainThread = Thread.currentThread ();

Thread aFoo = new Foo ();

aFoo.start ();

System.out.println (mainThread == Foo.currentThread ());

System.out.println (mainThread == aFoo.currentThread ());

aFoo.printStuff ();

}

}

11.3 Synchronization

Two threads can communicate simply by setting variables that they both have
access to. This sounds simple, but it is fraught with peril. Consider the following
class, intended as a place for threads to leave String-valued messages for each other.

class Mailbox { // Version I. (Non-working)

volatile String msg;

Mailbox () { msg = null; }

void send (String msg0) {

msg = msg0;

}

String receive () {

String result = msg;

msg = null;

return result;

}

}

Here, I am assuming that there are, in general, several threads using a Mailbox to
send messages and several using it to receive, and that we don’t really care which
thread receives any given message as long as each message gets received by exactly
one thread.



246 CHAPTER 11. MULTIPLE THREADS OF CONTROL

This first solution has a number of problems:

1. If two threads call send with no intervening call to receive, one of their
messages will be lost (a write-write conflict).

2. If two threads call receive simultaneously, they can both get the same mes-
sage (one example of a read-write conflict because we wanted one of the
threads to write null into result before the other thread read it.

3. If there is no message, then receive will return null rather than a message.

Items (1) and (2) are both known as race conditions—so called because two threads
are racing to read or write a shared variable, and the result depends (unpredictably)
on which wins. We’d like instead for any thread that calls send to wait for any
existing message to be received first before preceding; likewise for any thread that
calls receive to wait for a message to be present; and in all cases for multiple
senders and receivers to wait their respective turns before proceeding.

11.3.1 Mutual exclusion

We could try the following re-writes of send and receive:

class Mailbox { Version II. (Still has problems)

volatile String msg;

Mailbox () { msg = null; }

void send (String msg0) {

while (msg != null)

; /* Do nothing */

msg = msg0;

}

String receive () {

while (msg == null)

; /* Do nothing */

String result = msg;

msg = null;

return result;

}

}

The while loops with empty bodies indulge in what is known as busy waiting. A
thread will not get by the loop in send until this.msg becomes null (as a result of
action by some other thread), indicating that no message is present. A thread will
not get by the loop in receive until this.msg becomes non-null, indicating that a
message is present. (For an explanation of the keyword volatile, see §11.3.3.)
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Unfortunately, we still have a serious problem: it is still possible for two threads
to call send, simultaneously find this.msg to be null, and then both set it, losing
one message (similarly for receive). We want to make the section of code in each
procedure from testing this.msg for null through the assignment to this.msg to
be effectively atomic—that is, to be executed as an indivisible unit by each thread.

Java provides a construct that allows us to lock an object, and to set up regions
of code in which threads mutually exclude each other if operating on the same
object.

Syntax.

SynchronizeStatement:
synchronized ( Expression ) Block

The Expression must yield a non-null reference value.

Semantics. We can use this construct in the code above as follows:

class Mailbox { // Version III. (Starvation-prone)

String msg;

Mailbox () { msg = null; }

void send (String msg0) {

while (true)

synchronized (this) {

if (msg == null) {

msg = msg0;

return;

}

}

}

String receive () {

while (true)

synchronized (this) {

if (msg != null) {

String result = msg;

msg = null;

return result;

}

}

}

}

The two synchronized blocks above are said to lock the object referenced by their
argument, this.

When a given thread, call it t, executes the statement
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synchronized (X) { S }

the effect is as follows:

• If some thread other than t has one or more locks on the object pointed to by
X, t stops executing until these locks are removed. t then places a lock on the
object pointed to by X (the usual terminology is that it acquires a lock on X).
It’s OK if t already has such a lock; it then gets another. These operations,
which together are known as acquiring a lock on (the object pointed to by) X
are carried out in such a way that only one thread can lock an object at a
time.

• S is executed.

• No matter how S exits—whether by return or break or exception or reaching
its last statement or whatever—the lock that was placed on the object is then
removed.

As a result, if every function that touches the object pointed to by X is careful
to synchronize on it first, only one thread at a time will modify that object, and
many of the problems alluded to earlier go away. We call S a critical region for
the object referenced by X. In our Mailbox example, putting accesses to the msg

field in critical regions guarantees that two threads can’t both read the msg field of
a Mailbox, find it null, and then both stick messages into it (one overwriting the
other).

We’re still not done, unfortunately. Java makes no guarantees about which of
several threads that are waiting to acquire a lock will ‘win’. In particular, one
cannot assume a first-come-first-served policy. For example, if one thread is looping
around in receive waiting for the msg field to become non-null, it can permanently
prevent another thread that is executing send from ever acquiring the lock! The
‘receiving’ thread can start executing its critical region, causing the ‘sending’ thread
to wait. The receiving thread can then release its lock, loop around, and re-acquire
its lock even though the sending thread was waiting for it. We say that the sender
can starve. There are various technical reasons for Java’s being so loose and chaotic
about who gets locks, which we won’t go into here. We need a way for a thread to
wait for something to happen without starving the very threads that could make it
happen, and without monopolizing the processor with useless thumb-twiddling.

11.3.2 Wait and notify

The solution is to use the routines wait, notify, and notifyAll to temporarily
remove locks until something interesting happens. These methods are defined on all
Objects. If thread T calls X.wait(), then T must have a lock on the object pointed
to by X (there is an exception thrown otherwise). The effect is that T temporarily
removes all locks it has on that object and then waits on X. (Confusingly, this
is not the same as waiting to acquire a lock on the object; that’s why I used the
phrase “stops executing” above instead.) Other threads can now acquire locks on
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the object. If a thread that has a lock on X executes notifyAll, then all threads
waiting on X at that time stop waiting and each tries to re-acquire all its locks
on X and continue (as usual, only one succeeds; the rest continue to contend for a
lock on the object). The notify method is the same, but wakes up only one thread
(choosing arbitrarily). With these methods, we can re-code Mailbox as follows:

// Version IV. (Mostly working)

void send (String msg0) {

synchronized (this) {

while (msg != null)

try {

this.wait ();

} catch (InterruptedException e) { }

msg = msg0;

this.notifyAll ();

}

}

String receive () {

synchronized (this) {

while (this.msg == null)

try {

this.wait ();

} catch (InterruptedException e) { }

String result = msg;

this.notifyAll (); // Unorthodox placement. See below.

msg = null;

return result;

}

}

In the code above, the send method first locks the Mailbox and then checks to
see if all messages that were previously sent have been received yet. If there is
still an unreceived message, the thread releases its locks and waits. Some other
thread, calling receive, will pick up the message, and notify the would-be senders,
causing them to wake up. The senders cannot immediately acquire the lock since
the receiving thread has not left receive yet. Hence, the placement of notifyAll
in the receive method is not critical, and to make this point, I have put it in a
rather non-intuitive place (normally, I’d put it just before the return as a stylistic
matter). When the receiving thread leaves, the senders may again acquire their
locks. Because several senders may be waiting, all but one of them will typically
lose out; that’s why the wait statements are in a loop.

This pattern—a function whose body synchronizes on this—is so common that
there is a shorthand (whose meaning is nevertheless identical):
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synchronized void send (String msg0) {

while (msg != null)

try {

this.wait ();

} catch (InterruptedException e) { }

msg = msg0;

this.notifyAll ();

}

synchronized String receive () {

while (this.msg == null)

try {

this.wait ();

} catch (InterruptedException e) { }

String result = msg;

this.notifyAll ();

msg = null;

return result;

}

There are still times when one wants to lock some arbitrary existing object (such as
a shared Vector of information), and the synchronized statement I showed first
is still useful.

It may have occurred to you that waking up all threads that are waiting only to
have most of them go back to waiting is a bit inefficient. This is true, and in fact,
so loose are Java’s rules about the order in which threads get control, that it is still
possible with our solution for one thread to be starved of any chance to get work
done, due to a constant stream of fellow sending or receiving threads. At least in
this case, some thread gets useful work done, so we have indeed improved matters.
A more elaborate solution, involving more objects, will fix the remaining starvation
possibility, but for our modest purposes, it is not likely to be a problem.

11.3.3 Volatile storage

You probably noticed the mysterious qualifier volatile in the busy-waiting example.
Without this qualifier on a field, a Java implementation is entitled to pretend that
no thread will change the contents of a field after another thread has read those
contents until that second thread has acquired or released a lock, or executed a
wait, notify, or notifyAll. For example, a Java implementation can treat the
following two pieces of code as identical, and translate the one on the left into the
one on the right:

tmp = X.z;

while (X.z < 100) { while (tmp < 100) {
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X.z += 1; tmp += 1;

} }

X.z = tmp;

But of course, the effects of these two pieces of code are not identical if another
thread is also modifying X.z at the same time. If we declare z to be volatile, on the
other hand, then Java must use the code on the left.

By default, fields are not considered volatile because it is potentially expensive
(that is, slow) not to be able to keep things in temporary variables (which may often
be fast registers). It’s not common in most programs, with the exception of what
I’ll call the shared, one-way flag idiom. Suppose that you have a simple variable
of some type other than long or double1 and that some threads only read from
this variable and others only write to it. A typical use: one thread is doing some
lengthy computation that might turn out to be superfluous, depending on what
other threads do. So we set up a boolean field in some object that is shared by all
these threads:

volatile boolean abortComputation;

Every now and then (say at the top of some main loop), the computing thread checks
the value of abortComputation. The other threads can tell it to stop by setting
abortComputation to true. Making this field volatile in this case has exactly the
same effect as putting every attempt to read or write the field in a synchronized

statement, but is considerably cheaper.

11.4 Interrupts

Amongst programmers, the traditional definition of an interrupt is an “asynchronous
transfer of control” to some pre-arranged location in response to some event2. That
is, one’s program is innocently tooling along when, between one instruction and the
next, the system inserts what amounts to a kind of procedure call to a subprogram
called an interrupt handler. In its most primitive form, an interrupt handler is not a
separate thread of control; rather it usurps the thread that is running your program.
The purpose of interrupts is to allow a program to handle a given situation when

1The reason for this restriction is technical. The Java specification requires that assigning to
or reading from a variable of a type other than long and double, is atomic, which means that any
value read from a variable is one of the values that was assigned to the variable. You might think
that always has to be so. However, many machines have to treat variables of type long and double

internally as if they were actually two smaller variables, so that assigning to them is actually two

operations. If a thread reads from such a variable during an assignment (by another thread), it
can therefore get a weird value that consists partly of what was previously in the variable, and
partly what the assignment is storing into the variable. Of course, a Java implementation could “do
the right thing” in such cases by quietly performing the equivalent of a synchronized statement
whenever reading or writing such “big” variables, but that is expensive, and it was deemed better
simply to let bad things happen and to warn programmers to be careful.

2Actually, ‘interrupt’ is also used to refer to the precipitating event itself; the terminology is a
bit loose.
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it occurs, without having to check constantly (or poll, to use the technical term) to
see if the situation has occurred while in the midst of other work.

For example, from your program’s point of view, an interrupt occurs when you
type a Ctrl-C on your keyboard. The operating system you are using handles
numerous interrupts even as your program runs; one of its jobs is to make these
invisible to your program.

Without further restrictions, interrupts are extremely difficult to use safely. The
problem is that if one really can’t control at all where an interrupt might occur,
one’s program can all too easily be caught with its proverbial pants down. Consider,
for example, what happens with a situation like this:

// Regular program | // Interrupt handler

theBox.send (myMessage); | theBox.send (specialMessage);

where the interrupt handlers gets called in the middle of the regular program’s send
routine. Since the interrupt handler acts like a procedure that is called during the
sending of myMessage, we now have all the problems with simultaneous sends that
we discussed before. If you tried to fix this problem by declaring that the interrupt
handler must wait to acquire a lock on theBox (i.e., changing the normal rule that
a thread may hold any number of locks on an object), you’d have an even bigger
problem. The handler would then have to wait for the regular program, but the
regular program would not be running—the handler would be!

Because of these potential problems, Java’s “interrupts” are greatly constrained;
in fact, they are really not asynchronous at all. One cannot, in fact, interrupt
a thread’s execution at an arbitrary point, nor arrange to execute an arbitrary
handler. If T points to an active Thread (one that has been started, and has not
yet terminated), then the call T.interrupt() puts the thread associated with T

in interrupted status. When that thread subsequently performs a wait—or if it is
waiting at the time it is interrupted—two things happen in sequence:

• The thread re-acquires all its locks on the object on which it executed the
wait call in the usual way (that is, it waits for any other thread to release its
locks on the object).

• The thread then throws the exception InterruptedException (from package
java.lang). This is a checked exception, so your program must have the
necessary catch clause or throws clause to account for this exception. At
this point, the thread is no longer in interrupted status (so if it chooses to
wait again, it won’t be immediately re-awakened).

In Figures 11.1–11.2, methods that are declared to throw InterruptedException

do so when the current thread (the one executing the call, not necessarily the Thread
whose method is being executed) becomes interrupted (or was at the time of the
call). When that happens CURRENT.isInterrupted() reset to false.

You’ve probably noticed that being interrupted requires the coöperation of the
interrupted thread. This discipline allows the programmers to insure that interrupts
occur only where they are non- disruptive, but it makes it impossible to achieve
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effects such as stopping a renegade thread “against its will.” In the current state
of the Java library, it appears that this is, in fact, impossible. That is, there
is no general way, short of executing System.exit and shutting down the entire
program, to reliably stop a runaway thread. While poking around in the Java
library, you may run across the methods stop, suspend, resume, and destroy

in class Thread. All of these methods are either deprecated, meaning that they are
present for historical reasons and the language designers think you shouldn’t use
them, or (in the case of destroy) unimplemented. I suggest that you join in the
spirit of deprecation and avoid these methods entirely. First, it is very tricky to use
them safely. For example, if you manage to suspend a thread while it has a lock
on some object, that lock is not released. Second, because of the peculiarities of
Java’s implementation, they won’t actually do what you want. Specifically, the stop
method does not stop a thread immediately, but only at certain (unspecified) points
in the program. Threads that are in an infinite loop doing nothing but computation
may never reach such a point.
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BufferedReader, 185

FileNotFoundException, 185

FileReader, 185

IOException, 185

PrintStream, 214--215

PrintWriter, 214--215

java.lang package, 79

java.lang classes

ArrayIndexOutOfBoundsException,

144, 184

Character, 197

Class, 157
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Error, 188

IllegalArgumentException, 182

InterruptedException, 248

NegativeArraySizeException, 146

NullPointerException, 140, 141,

144, 155, 182

NumberFormatException, 184

Object, 85

Runnable, 236

RuntimeException, 188

String, 147--149, 197--206

StringBuilder, 206--207

Thread, 236, 238

Throwable, 182, 190

java.lang.StringBuilder constructor,

208

java.lang.StringBuilder methods

StringBuilder (constructor), 208

java.util classes

Iterable, 175

Iterator, 173

Scanner, 219--221

java.util.regex classes

Matcher, 216

Pattern, 215--219

javac (compiler), 7

JumpStatement, 176

keywords, 75

Kleene star, 64

Label, 176

LabeledStatement, 176

lastIndexOf (String), 201

left associative operator, 117

left-to-right evaluation, 117

LeftHandSide, 116, 150

length field, 144

length (String), 13, 199, 203

length (StringBuilder), 208

Letter, 75

LetterOrDigit, 75

lexical structure, 61

library, standard, 62

linear interpolation, 39

lists (in grammars), 64

Literal, 118

local class, 91

local variable, 81

LocalClassDeclaration, 93

LocalDeclarationStatement, 81

lock, 243

lock, acquiring, 244

logical and, 138

logical not, 138

logical not (!), 118

logical or, 138

long keyword, 72

loop

-and-a-half, 171

do...while, 32, 170

for, 170

while, 32, 170

loops, restarting, 178

main program, 6, 18, 110

Matcher class, 216

Math methods

sqrt, 14

MAX VALUE (field), 133

MemberName, 78

members of a class, 6, 84

MemberTypeDeclaration, 90

MemberTypeModifier, 90

method call, 6, 152

method call, instance, 154

method call, static, 153

method declarations, 95

method resolution, static, 153

method signature, 14

method, synchronized, 245

MethodBody, 96

MethodDeclaration, 95

MethodModifier, 96

MethodName, 78, 152

methods, exiting, 179

MethodSelector, 152

MethodSignature, 96

MethodSignatureDeclaration, 87

MIN VALUE (field), 133

modular arithmetic, 122, 125
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multi-dimensional array, 42--44

multiply, 125, 134

multiply (*), 9, 118

Name, 78

NaN (field), 133

NaN (Not A Number), 132

NaN (Not a Number), 10

native keyword, 96, 98

negative 0, 132

NEGATIVE INFINITY (field), 133

NegativeArraySizeException class, 146

nested class, 90

nested interface, 90

new keyword, 38, 93, 140, 146

new T<> shorthand, 231

newInstance (Class), 158

newline, 124

non-static member, 84

nonterminal symbol, 63

not equals (!=), 11, 118

NounPhrase, 63, 64

null keyword, 44, 140

NullLiteral, 139

NullPointerException class, 140, 141,

144, 155, 182

NumberFormatException class, 184

Object class, 85

Object methods

clone, 108

getClass, 157

toString, 202

object-based programming, 46

OctalDigit, 122

OctalEscape, 124

Operand, 115, 139, 157

OtherPrimary, 116

outer-level types and packages, 79

OuterObject, 93, 140

overloading, 22, 76, 99

overriding, 85, 100

package, 56--57, 78

package keyword, 79

package representation, 79

package-private access, 57, 109

PackageClause, 79

PackageImport, 80

PackageName, 78

parallel programming, 235

Parameter, 96

parameter, actual, 6, 152

parameterized type, 225

ParameterList, 64

parenthesized expression, 117

parseDouble (Double), 18

parseInt (Integer), 18

pass by value, 153

Pattern class, 215--219

pig latin, 24

pointer, 38, 68

null, 70

POSITIVE INFINITY (field), 133

PositiveDigit, 122

PositiveOctalDigit, 122

postfix operator, 117

PostfixExpression, 116, 150

pre/post decrement (--), 118

pre/post increment (++), 118

precedence of operators, 10, 117

prefix operator, 117

Primary, 116

prime number, 18

prime sieve, 40--42

PrimitiveType, 72

print (PrintStream), 7

println (PrintStream), 7

printStackTrace (Throwable), 190

PrintStream class, 214--215

PrintStream methods

print, 7

println, 7

PrintWriter class, 214--215

private keyword, 13, 56, 86, 90, 96,

103, 109

private constructors, 107

programming language

definition, 61

prologue, standard, 62

proper subclass, 85
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proper subtype, 85

proper superclass, 85

protected keyword, 56, 86, 90, 96,

103, 109

public keyword, 13, 56, 83, 86, 87,

90, 96, 103, 109

public type, 85

qualified name, 78

Qualifier, 78

RealLiteral, 132

reduction loop, 35

reference, 38, see pointer

reference type, 38

ReferenceType, 72

referent, 70

reflection, 156

regionMatches (String), 200

regular expression, 216

remainder, 125, 134

remainder (%), 9, 118

replace (String), 201

replace (StringBuilder), 210

reserved words, 75

resume (Thread), 249

return keyword, 179

ReturnStatement, 179

reverse (StringBuilder), 210

Runnable class, 236

RuntimeException class, 188

Scanner class, 219--221

scope, 76

selection, 6, 78

selection (.), 6, 118

selection statement, 165

SelectionStatement, 165

semantics, 62

Sentence, 63

setCharAt (StringBuilder), 210

setLength (StringBuilder), 210

shadowing, see hiding

shift left, 128

shift left (<<), 118

shift right arithmetic, 128

shift right arithmetic (>>), 118

shift right logical, 128

shift right logical (>>>), 118

short keyword, 72

side effect, 115

sieve of Eratosthenes, 40--42

Sign, 133

signature, method, 14

SimpleName, 78

SimpleNounPhrase, 64

SingleCharacter, 124

singleton object (idiom), 107

SingularNoun, 63

SingularVerb, 63

sqrt (Math), 14

stack trace, 58

standalone application, 110

standard library, 79

standard prologue, 62

start symbol, 63

startsWith (String), 200

starvation, 244

Statement, 163

statement

definition, 115

StatementExpression, 116

StatementExpressions, 170

static

property, 61

semantics, 62

static keyword, 80, 86, 87, 90, 96,

108

static field, 86

static member, 84

static method, 13, 98

static method call, 153

static method resolution, 153

static nested type, 90

static type, 72

StaticImport, 80

StaticInitializer, 108

StaticMemberName, 78

stop (Thread), 249

Strings, immutability of, 197

String class, 147--149, 197--206
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string concatenation, 12, 149

String methods

charAt, 13, 199, 203

compareTo, 200, 205

compareToIgnoreCase, 200

concat, 201, 202

endsWith, 200

equals, 13, 200, 205

equalsIgnoreCase, 200

format, 199, 202

hashCode, 201, 206

indexOf, 25, 201

intern, 201, 205

lastIndexOf, 201

length, 13, 199, 203

regionMatches, 200

replace, 201

startsWith, 200

substring, 13, 199, 203

toLowerCase, 200

toString, 201

toUpperCase, 200

trim, 201

valueOf, 199

StringBuilder (constructor), 208

StringBuilder class, 206--207

StringBuilder methods

append, 209

charAt, 208

delete, 210

deleteCharAt, 210

getChars, 208

insert, 209

length, 208

replace, 210

reverse, 210

setCharAt, 210

setLength, 210

substring, 208

toString, 208

StringCharacter, 147

StringLiteral, 147

strings, 147, 197

structured container, 144

subclass, 85

substring (String), 13, 199, 203

substring (StringBuilder), 208

subtraction, 125, 134

subtype, 51, 85, 87, 88

super keyword, 103, 140, 141, 152

superclass, 85

superinterface, 87

SuperInterfaces, 87

suspend (Thread), 249

switch keyword, 16, 165

SwitchBlockStatements, 165

SwitchLabel, 165

synchronized keyword, 96, 243, 245

synchronized method, 245

SynchronizeStatement, 243

syntactic variable, 63

syntax, 62

tail recursion, 30

terminal symbols, 63

This, 154

this keyword, 46, 91, 98, 103, 154

thread, 235

Thread class, 236, 238

Thread methods

destroy, 249

resume, 249

stop, 249

suspend, 249

throw keyword, 181

Throwable class, 182, 190

Throwable methods

fillInStackTrace, 190

getLocalizedMessage, 190

getMessage, 190

printStackTrace, 190

toString, 190

Throws, 96, 188

throws keyword, 96, 188

ThrowStatement, 181

toLowerCase (String), 200

toString (Object), 202

toString (String), 201

toString (StringBuilder), 208

toString (Throwable), 190
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toUpperCase (String), 200

transient keyword, 86

trim (String), 201

true keyword, 138

try keyword, 181, 183

TryStatement, 181

Type, 72

type, 70

definition, 67

dynamic, 72

static, 72

type bound, 228

type denotation, 72

type parameter, 225

type variable, 225

type, testing, 143

TypeArguments, 230

TypeBounds, 230

TypeDeclaration, 83

TypeImport, 80

TypeName, 78

TypeParameters, 230

unary minus, 125, 134

unary minus, subtraction (-), 9, 118

unary plus, 125, 134

unary plus, addition, concatenation

(+), 9, 12, 118

UnaryAdditiveOperator, 125, 131

UnaryExpression, 116, 125, 128, 131,

138, 150

UnaryOperator, 116

unboxing, 230

Unicode, 195

value

definition, 67

value parameters, 153

valueOf (String), 199

VarArgs, 96

varargs, 96

varargs (...), 96

variable-arity parameter, see varargs

variant, 22

VarInit, 81

VerbPhrase, 63

virtual machine, 110

void keyword, 13, 96

volatile keyword, 86, 246

while keyword, 32, 170

whitespace, 65

widening, 120

Wildcard, 230

WildcardBounds, 230

wildcards, 228

wrapper classes, 229

ZeroToThree, 124
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