
CS 61B Discussion 12: Graphs Fall 2016

A

B C

D

EF

1 Graph Representation
Represent the graph with edge list (a.k.a. adjacency list) and adjacency matrix representation.

NOTE: Edge lists and adjacency lists are not the same! That was a mistake. An edge list is like a
linked list (see lecture), and and an adjacency list is more of a table that lists the adjacent vertices
for each vertex in the graph. Graphs are commonly represented using adjacency lists and matrices.

Adjacency List
A → [B, F]
B → [C, E]
C → [D, E]
D → [E, F]
E → [F]
F → []

TO
A B C D E F

FROM

A F T F F F T
B F F T F T T
C F F F T T F
D F F F F T T
E F F F F F F
F F F F F F F

2 Searches and Traversals
Run depth first search (DFS) and breadth first search (BFS) on the graph, starting from node A.
List the order in which each node is traversed. Whenever there is a choice of which node to visit
next, break ties alphabetically (choosing earlier values).

DFS preorder: A, B, C, D, E, F
DFS postorder: F, E, D, C, B, A
BFS: A, B, F, C, E, D

As an exercise, if we replace E → F with B → F , we get:
DFS preorder: A, B, C, D, E, F
DFS postorder: E, F, D, C, B, A
BFS: A, B, F, C, E, D

3 Topological Sorting
Give a valid topological ordering of the graph. Is the topological ordering of the graph unique?

One valid ordering: A, B, C, D, E, F
The ordering is unique.

CS 61B, Fall 2016, Discussion 12: Graphs 1



As an exercise, if we replace E → F with B → F , we get the following as valid topological order-
ings:
A, B, C, D, E, F
A, B, C, D, F, E

4 Dijkstra’s Algorithm
Given the following graph, write down the value dist(v) for all vertices v during each iteration
of Dijkstra’s algorithm, starting at node A.

dist(v)
v Init Pop A Pop D Pop B Pop C Pop E
A ∞ 0 0 0 0 0
B ∞ 4 4 4 4 4
C ∞ ∞ 6 6 6 6
D ∞ 2 2 2 2 2
E ∞ ∞ 9 8 7 7

A

B C

ED

4

2

1

2

7

1 3
4

4

5 Exercise: Bipartite Graphs
An undirected graph is a bipartite graph if its vertices can be separated into two disjoint sets such
that each edge in the graph spans both sets (is connected to a vertex in each set). Given a connected
graph G, fill in the method below so that it returns True iff G is a bipartite graph.
public static boolean isBipartite(Graph G) {

Node start = getRandomNode(G);
// This may have been misleading; VISITED tells us the set for each node
HashMap<Node, Boolean> visited = new HashMap<Node, Boolean>();
ArrayList<Node> fringe = new ArrayList<Node>();
visited.put(start, true);
fringe.add(start);
while (!fringe.isEmpty()) {

Node n = fringe.pop();
boolean curr = visited.get(n);
for (Node neighbor: n.neighbors()) {

if (visited.contains(neighbor)
&& visited.get(neighbor) == curr)
return false;

else {
visited.put(neighbor, !curr);
fringe.add(neighbor);

}
}

}
return true;

}

CS 61B, Fall 2016, Discussion 12: Graphs 2


