

1 Graph Representation

Represent the graph with edge list (a.k.a. adjacency list) and adjacency matrix representation.

NOTE: Edge lists and adjacency lists are not the same! That was a mistake. An edge list is like a linked list (see lecture), and an adjacency list is more of a table that lists the adjacent vertices for each vertex in the graph. Graphs are commonly represented using adjacency lists and matrices.

2 Searches and Traversals

Run depth first search (DFS) and breadth first search (BFS) on the graph, starting from node *A*. List the order in which each node is traversed. Whenever there is a choice of which node to visit next, break ties alphabetically (choosing earlier values).

DFS preorder: A, B, C, D, E, F DFS postorder: F, E, D, C, B, A BFS: A, B, F, C, E, D As an exercise, if we replace $E \rightarrow F$ with $B \rightarrow F$, we get: DFS preorder: A, B, C, D, E, F DFS postorder: E, F, D, C, B, A BFS: A, B, F, C, E, D

3 Topological Sorting

Give a valid topological ordering of the graph. Is the topological ordering of the graph unique?

One valid ordering: A, B, C, D, E, F The ordering is unique. As an exercise, if we replace $E \to F$ with $B \to F$, we get the following as valid topological orderings: A, B, C, D, E, F A, B, C, D, F, E

Dijkstra's Algorithm 4

Given the following graph, write down the value dist(v) for all vertices v during each iteration of Dijkstra's algorithm, starting at node A.

dist(v)						
v	Init	Pop A	Pop D	Pop B	Pop C	Pop E
Α	∞	0	0	0	0	0
В	∞	4	4	4	4	4
С	∞	∞	6	6	6	6
D	∞	2	2	2	2	2
Е	∞	∞	9	8	7	7

5 Exercise: Bipartite Graphs

An undirected graph is a bipartite graph if its vertices can be separated into two disjoint sets such that each edge in the graph spans both sets (is connected to a vertex in each set). Given a connected graph G, fill in the method below so that it returns True iff G is a bipartite graph.

```
public static boolean isBipartite(Graph G) {
Node start = getRandomNode(G);
// This may have been misleading; VISITED tells us the set for each node
HashMap<Node, Boolean> visited = new HashMap<Node, Boolean>();
ArrayList<Node> fringe = new ArrayList<Node>();
visited.put(start, true);
fringe.add(start);
while (!fringe.isEmpty()) {
    Node n = fringe.pop();
    boolean curr = visited.get(n);
    for (Node neighbor: n.neighbors()) {
        if (visited.contains(neighbor)
            && visited.get(neighbor) == curr)
            return false;
        else {
            visited.put(neighbor, !curr);
            fringe.add(neighbor);
        }
return true;
```

}