CS 61B Disc.14: Misc.onclusion Fall 2016
1 Design

Nice! You got an interview with Chalisee Fahwajiarns, CEO of Pearbnb, the hot new geoponics startup
based in the Central Valley. For each of the following scenarios, determine which data structures (doesn’t
have to be strictly Java) would give the best performance and what algorithms would be used. Additionally,
give the worst-case runtime for any operations listed.

a. Chalisee says she has a list of N names of crops, where each entry in the list represents an acre of
farmland in the Central Valley. Find the number of acres grown for each crop.

Data Structures: HashMap<String, Integer>

Algorithm: Iterate through the list of names, maintaining a mapping from crop name to number of
acres, incrementing at each ocurrence.

Runtime: O(N)

b. Pearbnb is a trusted community marketplace for people to list, discover, and order unique produce and
plants around the world. Chalisee wants to start developing auto-complete for search on Pearbnb’s
website. When a user types in the first K characters of a query, she wants the website to say how many
products have the same K character prefix. Assume that no products have a name longer than M and
there are N distinct products. Optimize for both constructing the solution and matching a query.

Data Structures: Trie

Algorithm: Construct a trie on the product names using character at each node. Conveniently store
how many words use a prefix represented by a node at that node.

Runtime: ®(NM) for construction and ®(K) for query

c. One of the things that Pearbnb does is optimize the profits for farmers. Pearbnb uses a database of
N Orders. Each Order represents an order from a customer for a specific product and has the
following: the customer’s name, the Date the order was made, the Date requested for the delivery,
the name of the product ordered, the quantity of the product ordered, and the price per unit for the
product. Chalisee, a champion for Big Data, wants to run analytics on Pearbnb’s database and query
for Orders requested to be delivered within a certain range of dates for a certain product. Optimize
for both constructing the solution and matching a query.

Data Structures: HashMap<String, ArrayList<Order»

Algorithm: For each product, make a mapping from its name to an ArrayList<Order> sorted by
delivery date for that product. At query time, look up the appropriate list and do a binary search for
the indices corresponding to the endpoints. Return a view of that range.

Runtime: ®(NlogN) for construction and ®(logN) for query. (The worst case is all orders are for
the same product)

d. Pearbnb runs a subsidiary company, ImPearfect Produce, that handles it’s deliveries to customers in
urban areas. ImPearfect Produce likes to optimize its deliveries and also promote fairness, but it only
allows each of its trucks to carry one type of product at a time. Therefore, ImPearfect Produce has
the policy to send a truck carrying the product of the earliest uncompleted order, while trying to fulfill
as many orders as possible for that product. ImPearfect Produce must maintain some collection of N
Orders that optimizes adding new orders and figuring out what products to deliver on its next truck.

Data Structures: PriorityQueue<PriorityQueue<Order»,
HashMap<String, PriorityQueue<Order»

CS 61B, Fall 2016, Disc.14: Misc.onclusion 1

Algorithm (one possible solution): We assume PriorityQueues can handle priority changes.
Maintain a priority queue that tells us which product to ship next (denote as ProductPQ). Each
element in the outer priority queue is a priority queue of all orders for a specific product (denote as
OrderPQ). Each OrderPQ has a priority equal to the priority of the Date of its first Order (in
this case, earlier dates have higher priority). To figure out the product of a new shipment, peek at
the ProductPQ. The HashMap will map from product names to product OrderPQ’s inside the
ProductPQ. To add an order, use the mapping and add the order to its respective OrderPQ.
Runtime: ®(logN) for adding an order and ®(1) to find the next product.

Extra: To actually complete orders, pop from the ProductPQ and keep completing (popping) or-
ders from the OrderPQ until no order can be fully completed, then add the OrderPQ back to the
ProductPO.

2 Weighted Quick Union Trees with Path Compression

Assume we have eight sets, represented by integers 1 through 8, that start off as completely disjoint sets.
Draw the WQU Tree after the series of union () and £ind () operations with path compression. Write
down the result of £ind () operations. Break ties by choosing the smaller integer to be the root.

union (2, 3);

union(l, 6); a\

union (5, 7);

union (8, 4);

union (7, 2);) . . .

Find(3) s find () returns 2, 1, 1 respectively a e o G e e

union (6, 4);
union (6, 3); e
find (7);

find (8);

3 Skip Lists

Draw the resulting skip list after adding the following numbers at the specified random height. Then high-
light the links used to find 148.

Number | 41 48 59 77 40 131 148 54 139 179 43 128 161 189 170
Height | 1 1 1 4 2 2 1 3 1 1 3 2 3 1 2

-0 | |40 || 41 || 43 || 48 || 54| |59 || 77 ||128]||131||139||148| |161||170| (179|189

+c0

CS 61B, Fall 2016, Disc.14: Misc.onclusion 2

