1 Basic Algorithmic Analysis

For each of the following function pairs f and g, list out the Θ, Ω, O relationships between f and g, if any such relationship exists. The log function here denotes the natural logarithm.

1. $f(x)=x^{2}, g(x)=x^{2}+x$
2. $f(x)=5000000 x^{3}, g(x)=x^{5}$
3. $f(x)=\log (x), g(x)=5 x$
4. $f(x)=e^{x}, g(x)=x^{5}$ (hint: $5>e$)
5. $f(x)=\log \left(5^{x}\right), g(x)=x$

2 Practice with Runtime

For each of the following functions, find the Big-Theta expression for the runtime of the function in terms of the input variable n.

1. For this problem, you may assume that the static method constant (inti) runs in $\Theta(1)$ time.
```
public static void thisIsANestedLoop(int n) {
    for (int i = 0; i < n; i += 1) {
        for (int j = 0; j < i; j += 1) {
            system.out.println(i + j);
        }
    }
    for (int k = 0; k < n; k += 1) {
        constant(k);
    }
}
```

2. public static void thisIsMoreConfusing(int n) \{
for (int $i=1 ; i<=n$; $i \quad *=2$) \{
for (int $j=0 ; j<i ; j+=1)$ \{
System.out.println("moo");
\}
\}
\}

3 A Bit with some Bits

Complete the following method such that it does what it is intended to do: given a list of integers, it returns an integer such that the i-th bit of the return value is 1 if and only if a majority of integers in the list have 1 in the ith bit.

Note: the solution to this question isn't very complicated, but it's not short! Try breaking it down into components, and ask your neighbors for help!

```
public static int bitVote(int[] bitList) {
```

for (int $i=0 ; i<32 ; i++)\{$
// For each bit index
for (int k : bitList) \{
// For each integer
\}
\}

