CS61B Lecture \#26

Today:

- Sorting algorithms: why?
- Insertion Sort.
- Inversions

Purposes of Sorting

- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
- Are there two equal items in this set?
- Are there two items in this set that both have the same value for property X ?
- What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions

- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \preceq, is:
- Total: $x \preceq y$ or $y \preceq x$ for all x, y.
- Reflexive: $x \preceq x$;
- Antisymmetric: $x \preceq y$ and $y \preceq x$ iff $x=y$.
- Transitive: $x \preceq y$ and $y \preceq z$ implies $x \preceq z$.
- However, our orderings may allow unequal items to be equivalent:
- E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
- A sort that does not change the relative order of equivalent entries is called stable.

Classifications

- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.

Sorting by Insertion

- Simple idea:
- starting with empty sequence of outputs.
- add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is \# of outputs so far.
- So gives us $O\left(N^{2}\right)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

```
for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
        if (A[j].compareTo(x) <= 0) /* (1) */
            break;
        A[j+1] = A[j];
    }
    A[j+1] = x;
}
```

- \#times (1) executes \approx how far x must move.
- If all items within K of proper places, then takes $O(K N)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: \# of inversions: pairs that are out of order (= 0 when sorted, $N(N-1) / 2$ when reversed).
- Each step of j decreases inversions by 1.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^{k}-1$ apart:
- sort items \#0, $2^{k}-1,2\left(2^{k}-1\right), 3\left(2^{k}-1\right), \ldots$, then
- sort items \#1, $1+2^{k}-1,1+2\left(2^{k}-1\right), 1+3\left(2^{k}-1\right), \ldots$, then
- sort items \#2, $2+2^{k}-1,2+2\left(2^{k}-1\right), 2+3\left(2^{k}-1\right), \ldots$, then
- etc.
- sort items \#2 $2^{k}-2,2\left(2^{k}-1\right)-1,3\left(2^{k}-1\right)-1, \ldots$,
- Each time an item moves, can reduce \#inversions by as much as $2^{k}+1$.
- Now sort subsequences of elements $2^{k-1}-1$ apart:
- sort items \# $0,2^{k-1}-1,2\left(2^{k-1}-1\right), 3\left(2^{k-1}-1\right), \ldots$, then
- sort items \#1, $1+2^{k-1}-1,1+2\left(2^{k-1}-1\right), 1+3\left(2^{k-1}-1\right), \ldots$,
-:
- End at plain insertion sort ($2^{0}=1$ apart), but with most inversions gone.
- Sort is $\Theta\left(N^{1.5}\right)$ (take CS170 for why!).

