CS61B Lectures #27

Today:

- Shell's sort, Heap, Merge sorts
- Quicksort
- Selection

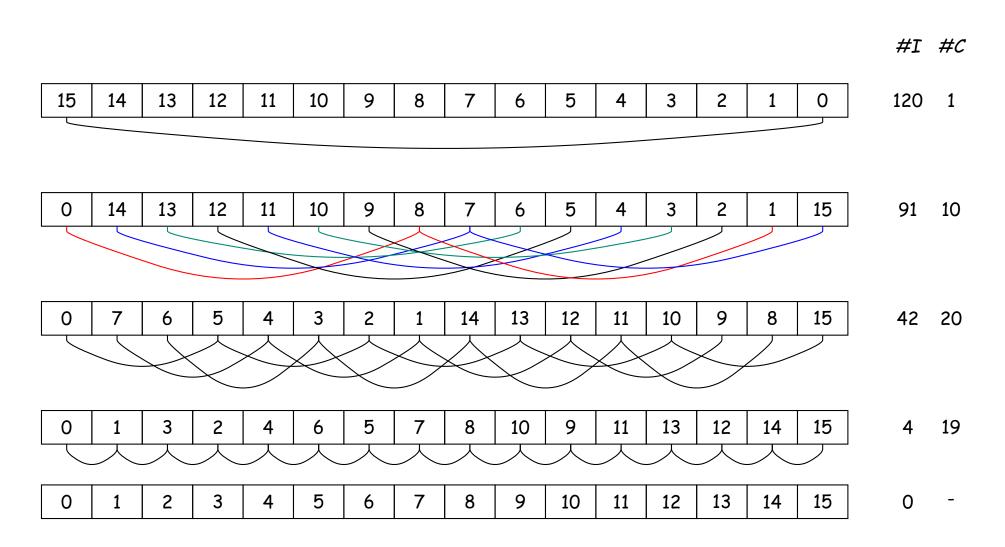
Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k 1$ apart:
 - sort items #0, $2^k 1$, $2(2^k 1)$, $3(2^k 1)$, ..., then
 - sort items #1, $1+2^k-1$, $1+2(2^k-1)$, $1+3(2^k-1)$, ..., then
 - sort items #2, $2+2^k-1$, $2+2(2^k-1)$, $2+3(2^k-1)$, ..., then
 - etc.
 - sort items $\#2^k-2$, $2(2^k-1)-1$, $3(2^k-1)-1$, ...,
 - Each time an item moves, can reduce #inversions by as much as 2^k+1 .
- Now sort subsequences of elements $2^{k-1} 1$ apart:
 - sort items #0, $2^{k-1} 1$, $2(2^{k-1} 1)$, $3(2^{k-1} 1)$, ..., then
 - sort items #1, $1+2^{k-1}-1$, $1+2(2^{k-1}-1)$, $1+3(2^{k-1}-1)$, ...,
 - -:
- ullet End at plain insertion sort ($2^0=1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell's Sort



I: Inversions left.

C: Comparisons needed to sort subsequences.

Sorting by Selection: Heapsort

Keep selecting smallest (or largest) element. Idea:

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

original:	19	0	-1	7	23	2	4	2
heapified:	42	23	19	7	0	2	_	1
	23	7	19	-1	0	2		42
	19	7	2	-1	0		23	42
	7	0	2	-1		19	23	42
	2	0	-1		7 :	19	23	42
	0	-1		2	7 :	19	23	42
	-1) [2	2	7 [19	23	42

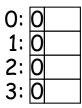
Merge Sorting

Divide data in 2 equal parts; recursively sort halves; merge re-Idea: sults.

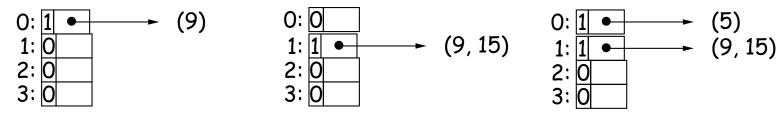
- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)



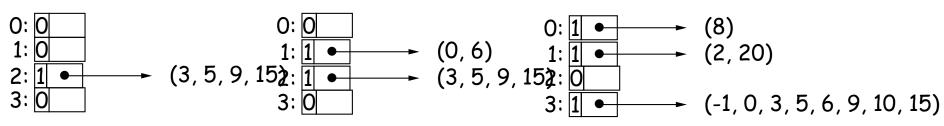
O elements processed



1 element processed

2 elements processed

3 elements processed



4 elements processed

6 elements processed

11 elements processed

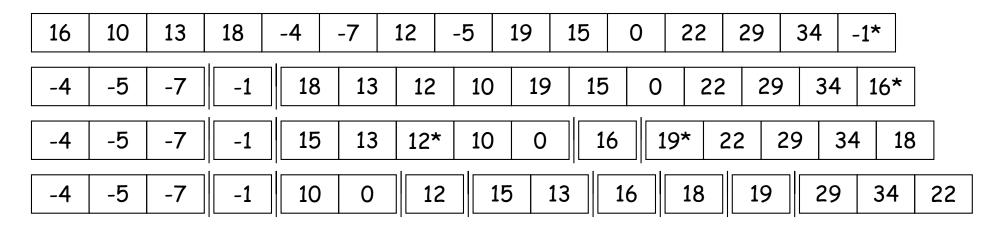
Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- \bullet In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.



Now everything is "close to" right, so just do insertion sort:

-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29	34	29	22	19	18	16	15	13	12	10	0	-1	-4	-5	-7	
--	----	----	----	----	----	----	----	----	----	----	---	----	----	----	----	--

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- ullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- ullet Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If m=k, you're done: p is answer.
 - If m > k, recursively select k^{th} from left half of sequence.
 - If m < k, recursively select $(k m 1)^{\text{th}}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

Looking for #10 to left of pivot 40:

Looking for #6 to right of pivot 4:

Looking for #1 to right of pivot 31:

Just two elements; just sort and return #1:

Result: 39

Selection Performance

ullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$
$$= N + N/2 + \ldots + 1$$
$$= 2N - 1 \in \Theta(N)$$

- ullet But in worst case, get $\Theta(N^2)$, as for quicksort.
- ullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).