C561B Lectures \#28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Better than $N \lg N$?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are N ! possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do N ! different combinations of move operations.
- Therefore, there must be N ! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).

Height \propto Sorting time

Necessary Choices

- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^{k}.
- Thus, need enough tests so that $2^{k}>N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$
m!\in \sqrt{2 \pi m}\left(\frac{m}{e}\right)^{m}\left(1+\Theta\left(\frac{1}{m}\right)\right)
$$

this tells us that

$$
k \in \Omega(N \lg N)
$$

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to $k N$, for some small constant k ?
- One technique: put the integers into N buckets, with an integer p going to bucket p / k.
- At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., $k=2, N=10$:

```
Start:
    14
In buckets:
    | 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |
```

- Now insertion sort is fast. For fixed $k, \Theta(N)$.

Distribution Counting

- Another technique: count the number of items $<1,<2$, etc.
- If $M_{p}=\#$ items with value $<p$, then in sorted order, the $j^{\text {th }}$ item with value p must be $\# M_{p}+j$.
- Gives linear-time algorithm.

Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives \# occurrences of each key.
- "Running sum" gives cumulative count of keys \leq each value...
- ... which tells us where to put each key:
- The first instance of key k goes into slot m, where m is the number of key instances that are $<k$.

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

$$
\begin{aligned}
& \text { bat, be, bet, cad, can, cat, con, let, set }
\end{aligned}
$$

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
* bat, be, bet / cat, cad, con, can / let / set	1
bat / * be, bet / cat, cad, con, can / let / set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / * cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of \#records.
- How to compare?
- To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^{2}$ operations.
- While radix sort takes $B=N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$
\Theta(N+N \lg N)=\Theta(N \lg N)
$$

Summary

- Insertion sort: $\Theta(N k)$ comparisons and moves, where k is maximum amount data is displaced from final position.
- Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O\left(N^{2}\right)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.

