CS61B Lectures #28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Better than N lg N?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data could be scrambled.
- ullet Therefore, your program must be prepared to do N! different combinations of move operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).

Height \propto Sorting time

Necessary Choices

- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k .
- ullet Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

this tells us that

$$k \in \Omega(N \lg N)$$
.

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- ullet One technique: put the integers into N buckets, with an integer pgoing to bucket p/k.
- At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., k = 2, N = 10:

Start: 14 3 10 13 4 2 19 17 0 9 In buckets:

• Now insertion sort is fast. For fixed k, $\Theta(N)$.

Distribution Counting

- Another technique: count the number of items < 1, < 2, etc.
- ullet If M_p =#items with value < p, then in sorted order, the $j^{ extstyle extstyle$ with value p must be $\#M_p + j$.
- Gives linear-time algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys
 < each value...
- ... which tells us where to put each key:
- ullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

Radix Sort

Sort keys one character at a time. Idea:

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD) radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

cad, can, cat, bat, be, set, let, bet, con

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / \star cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- ullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort takes $B=N\lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- ullet Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- \bullet Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.