
CS 61B Heaps and Hashing Fall 2021
1 Heaps of Fun
(a) Consider an array-based min-heap with N elements. What is the worst case asymptotic runtime

of each of the following operations if we ignore resizing? What is the worst case asymptotic
runtime if we take resizing into account?

Without Resizing With Resizing
Insert Θ(logN) Θ(N)

Find Min Θ(1) Θ(1)
Remove Min Θ(logN) Θ(logN)

Without Resizing:

• Insert: When we insert an item into the min-heap, we place it in the uppermost leftmost
available spot in the tree. In the worst case, we need to bubble up the item all the way to
the root. The height of a heap is log2N (this is always true becuase heaps are complete
binary trees), so bubbling the item to the top of the tree requires log2(N−1) ∈ Θ(logN)
swaps. Therefore, the worst case runtime for inserting an item into a min-heap (without
resizing) is Θ(logN).

• Find Min: By definition, the smallest item will always be at the root of a min-heap.
The root of a heap will always be at index 1 of the array in which the items are stored.
Indexing into an array takes Θ(1) time, so therefore finding the minimum item in a min-
heap takes Θ(1) time.

• Remove Min: When we remove an item from the min-heap, we make the rightmost leaf
element the new root. In the worst case, this new root value needs to be bubbled all the
way back down to the lowest level of the heap. If there are N nodes in the heap then there
are log2N levels, resulting in log2(N− 1) ∈ Θ(logN) swaps. Therefore, the worst case
runtime for Remove Min (without resizing) is Θ(logN).

With Resizing:

• Insert: In the worst case, the array we are trying to insert into is already full. We need
to make a new array to store the items of the min-heap, and then copy over all N items
into the new array. Copying over a single array element takes constant time, so copying
N items will take a total of Θ(N) time.

• Find Min: Same explanation as Find Min without resizing. We do not need to do any
resizing operations when we are finding the minimum element of the min-heap.

• Remove Min: In general, Java data structures do not size down. Therefore, removing an
item from a resizing heap has the same runtime as removing an item from a heap that
does not resize, giving us a worst case runtime of Θ(logN).
Note: If we decided to use a data structure that does resize down, then after reaching
some minimum occupancy we would need to create a new smaller array. All the items
would then need to be copied over into the new array, resulting in a runtime of Θ(N).

CS 61B, Fall 2021, Heaps and Hashing 1

(b) What are the advantages of using an array-based heap over a pointer-based heap?

Using a pointer-based representation is not as space-efficient. For an array-based heap, you
simply need to keep a cell for each element. For a pointer-based heap you need to maintain
pointers to each element’s child in adddition to keeping a field to store the element itself.

(c) How can you implement a max-heap of integers if you only have access to a min-heap?

For every insert operation, negate the number and add it to the min-heap. To perform a
removeMax operation, call removeMin on the min-heap and negate the number returned.

(d) Given an array and a min-heap, describe an algorithm that would allow you to sort the elements
of the array in ascending order.

Insert all elements from the array into the min-heap. Remove all items from the min-heap
one-by-one and place them back into the array at index 0, 1, 2, ..., etc. The resulting array
should now be sorted in ascending order.

Runtime analysis:

• Best case: All items are equivalent. Because there is no need to bubble up or bubble
down when inserting each item into the heap, each insertion takes Θ(1) time, giving us
a total of Θ(N) for inserting all N items into the heap. If all items are equivalent, there
is no need to bubble up or bubble down when removing an item. Therefore, removing
a single item will take Θ(1) time and removing all N items from the heap takes Θ(N)
time. Therefore the best case runtime is (insertion time) + (removal time), which is
Θ(N +N) ∈Θ(2N) ∈Θ(N).

• Worst case: In the worst case, all items are different and for each insertion we must
bubble the inserted item all the way up to the root of the heap. There are two ways to
derive the runtime: finding an explicit tight bound on the runtime, and using lower and
upper bounds to converge on a tight bound.

1. Finding an explicit tight bound: Inserting an item into the heap takes log2(x) time,
with x being the number of items currently in the heap. This means that when we
insert item i into the heap, there will be i− 1 items already in the heap. The table
below shows the number of swaps performed when we insert item i into the heap.

ith item to be inserted Number of swaps
1 0
2 log2(1)
3 log2(2)
4 log2(3)
... ...
N log2(N−1)

CS 61B, Fall 2021, Heaps and Hashing 2

The total runtime for inserting N items into the heap is simply the result of summing
the total number of swaps performed, which is as follows:

log(1)+ log(2)+ ...+ log(N−1) = log((N−1)(N−2)(N−3)...(3)(2)(1))
= log((N−1)!)

= log(
N!
N
)

= log(N!)− log(N)

∈Θ(log(N!))
∈Θ(NlogN)

Removing an item will also take log2(x) time, so by the same logic removing N
items will also take Θ(NlogN) time. Therefore, the worst case runtime is (insertion
time) + (removal time), which is Θ(NlogN +NlogN) ∈Θ(NlogN).

2. Using lower and upper bounds: We’ll break down this into two steps: finding an
upper bound, and finding a lower bound. We’ll first look at the time it takes to insert
all the items into the heap.
(a) Upper bound: The worst case insertion time of any single element happens

when we insert the last (Nth) item into the heap, resulting in a total of log2(N−
1) swaps and taking Θ(logN) time. Therefore, the time it takes to insert N items
will take no more than N · (worst case insertion time), which is O(NlogN) time.

(b) Lower bound: Finding the lower bound is a little trickier. We’ll calculate the
time it takes to perform a subset of insertion operations to our heap in order to
give us a valid lower bound. Given items 1, 2, 3, ..., N, we’ll only consider
the insertion of the last N

2 items. Of the last N
2 items, the quickest insertion

time is the N
2 th item, which performs log2(

N
2 −1) swaps in Θ(logN

2) ∈Θ(logN)

time. Performing the last N
2 insertions should therefore take at least N

2 · (quickest
insertion time), which is Ω(N

2 logN)∈Ω(NlogN). Because the time to insert the
last N

2 items is guaranteed to be smaller than the time it takes to insert all N
items, this is also a valid lower bound for the time it takes to insert all N items.

Since the upper and bounds are equivalent, we can safely conclude that the runtime
to insert all N items into a heap is Θ(NlogN).

Like Explanation 1, the same proof holds true for the removal of all N items from
the heap. Therefore the worst case runtime for inserting and removing all N items
from the heap is (insertion time) + (removal time), which is Θ(NlogN +NlogN) ∈
Θ(NlogN).

If you want to implement a more efficient version of this sorting algorithm, check out the
heapsort algorithm in next week’s discussion worksheet.

CS 61B, Fall 2021, Heaps and Hashing 3

2 HashMap Modification (61BL Summer 2010, MT2)
(a) If you modify a key that has been inserted into a HashMap, can you retrieve that entry again?

Explain.

� Always � Sometimes � Never

It is possible that the new key will end up colliding with the old key. Only in this rare situation
will we be able to retrieve the value. Otherwise, the new key will hash to a different hash code,
causing us to look in the wrong bucket inside our HashMap for our entry. It is very bad to
modify the key in a map because we cannot guarantee that the data structure will be able to
find the object for us if we change the key.

(b) If you modify a value that has been inserted into a HashMap, can you retrieve that entry
again? Explain.

� Always � Sometimes � Never

You can safely modify the value without any trouble. When you retrieve the value from the
map, the changes made to the value will be reflected. We use the key to determine where to
look for our value inside our HashMap, and because the key hasn’t been changed, we are still
able to find the entry we are looking for.

CS 61B, Fall 2021, Heaps and Hashing 4

3 Hash Code
In order for a hash code to be valid, objects that are equivalent to each other (i.e. .equals()
returns true) must return equivalent hash codes. If an object does not explicitly override the
hashCode() method, it will inherit the hashCode() method defined in the Object class,
which returns the object’s address in memory.

Here are four potential implementations of Integer’s hashCode() function. Assume that
intValue() returns the value represented by the Integer object. Categorize each hashCode()
implementation as either a valid or an invalid hash function. If it is invalid, explain why. If it is
valid, point out a flaw or disadvantage.

(1) public int hashCode() {
return -1;

}

Valid. As required, this hash function returns the same hash code for Integers that are .equals()
to each other. However, this is a terrible hash code because collisions are extremely frequent and
occur 100% of the time.

(2) public int hashCode() {
return intValue() * intValue();

}

Valid. Similar to (a), this hash function returns the same hash code for Integers that are
.equals(). However, Integers that share the same absolute values will collide (for example,
x = 5 and x = -5 will both return the same hash code). A better hash function would be to just
return intValue() itself.

(3) public int hashCode() {
Random rand = new Random();
return rand.nextInt();

}

Invalid. If we call hashCode() multiple times on the same Integer object, we will get differ-
ent hash codes returned each time.

(4) public int hashCode() {
return super.hashCode();

}

Invalid. This hash function returns some integer corresponding to the Integer object’s location
in memory. Different Integer objects will exist in different locations in memory, so even if they
represent the same value they will return different hash codes.

CS 61B, Fall 2021, Heaps and Hashing 5

4 Hashing Practice
Given the provided hashCode() implementation, hash the items listed below with external
chaining (the first item is already inserted for you). Assume the load factor is 1. Use geomet-
ric resizing with a resize factor of 2. You may draw more boxes to extend the array when you need
to resize.
/** Returns 0 if word begins with ’a’, 1 if it begins with ’b’, etc. */
public int hashCode() {

return word.charAt(0) - ’a’;
}

["apple", "cherry", "fig", "guava", "durian", "apricot", "banana"]

Here is what the hash table should look like after inserting guava:

apple

cherry

fig

guava

Here is what the hash table should look like after inserting durian:

apple

cherry

durian

fig

guava

CS 61B, Fall 2021, Heaps and Hashing 6

Here is what the hash table should look like after all insertions have been completed:

apple apricot

banana

cherry

durian

fig

guava

Extra: Suppose that we represent Tic-Tac-Toe boards as 3×3 arrays of integers (with each integer
in the range [0, 2] to represent blank, ‘X’, and ‘O’, respectively). Describe a hash function for
Tic-Tac-Toe boards that are represented in this way such that boards that are not equal will never
have the same hash code.

We can interpret the Tic-Tac-Toe board as a nine-digit base 3 number, and use this as the hash
code. More concretely, if the array used to store the Tic-Tac-Toe board was called board, then we
could compute the hash code as follows:

board[0][0]+3 ·board[0][1]+32 ·board[0][2]+33 ·board[1][0]+ . . .+38 ·board[2][2]

This hash code actually guarantees that any two distinct Tic-Tac-Toe boards will always have
distinct hash codes (in most situations this property is not feasible). Note that if we used this same
idea on boards of size N×N, it would take Θ(N2) time to compute the hash.

CS 61B, Fall 2021, Heaps and Hashing 7

