
CS 61B Discussion 13: Graphs Fall 2021

A

B C

D

EF

1 Graph Representation
Represent the graph above with an adjacency list and an adjacency matrix representation.

Depending on the convention being used, nodes may or may not have edges to themselves. For
this problem, we stick with the convention that nodes do not have an edge to themselves.

Adjacency List
A → [B, E, F]
B → [D]
C → []
D → [C, E]
E → []
F → [E]

TO
A B C D E F

FROM

A 0 1 0 0 1 1
B 0 0 0 1 0 0
C 0 0 0 0 0 0
D 0 0 1 0 1 0
E 0 0 0 0 0 0
F 0 0 0 0 1 0

(in the above matrix 0 means false and 1 means true)

Note: Edge lists and adjacency lists are not the same! An edge list is a list stored in each node that
contains all successors and possibly predecessors of that node (see lecture). An adjacency list is
more of a table (or map data structure) that lists the adjacent vertices for each vertex in the graph;
it is a representation of the graph as a whole. Graphs are commonly represented using adjacency
lists and matrices but be aware of what is meant by an edge list.

2 Searches and Traversals
Run depth first search (DFS) preorder, DFS postorder, and breadth first search (BFS) on the graph
above, starting from node A. List the order in which each node is first visited. Whenever there is a
choice of which node to visit next, visit nodes in alphabetical order.

DFS has both a preorder and postorder traversal. Preorder means we visit the node before visiting
its children. Postorder order means we visit the node only after visiting its children.

DFS preorder: A, B, D, C, E, F
DFS postorder: C, E, D, B, F, A
BFS: A, B, E, F, D, C

CS 61B, Fall 2021, Discussion 13: Graphs 1



3 Topological Sorting
Give a valid topological ordering of the graph. Is the topological ordering of the graph unique?

A topological ordering is a linear ordering of nodes such that for every directed edge S → T, S is
listed before T. For this problem, the topological ordering of the graph is not unique. Below, we
list two valid topological orderings for the graph.

• One valid ordering: A, B, D, C, F, E

– Explanation: One way to approach this problem is to take any node with no edges
leading to it and return it as the next node. After returning a node, we delete it and any
edges leaving from it and look for a node with no incoming edges in the updated graph.
We can repeat this until we have no nodes left. If at any point in this process we have a
multiple choices for which node to return then the topological ordering is not unique.

• Another possible valid ordering: A, F, B, D, E, C

– Explanation: Note that this ordering is just the reverse of DFS postorder traversal.
Reverse DFS postorder will always be a valid topological ordering. This is because a
DFS postorder traversal visits nodes only after all successors have been visited, so the
reverse traversal visits nodes only after all predecessors have been visited.

Note: Only Directed Acyclic Graphs (DAGs), which are directed graphs that do not contain any
cycles, have topological orderings. This is because within any given cycle, no one node comes
before another. There are no valid topological orderings for undirected graphs because there is no
direction associated with any edge. No one node comes before another, so it does not make sense
to have a topological ordering for undirected graphs.

CS 61B, Fall 2021, Discussion 13: Graphs 2



4 Minimum Spanning Trees

A

B

C

D

E

F

1

2
2

1

2

3

3
1

4

(a) Perform Prim’s algorithm to find a minimum spanning tree of the graph above. Pick A as the
initial node. If there are multiple nodes with the same cost, process them in alphabetical order.

Prim’s algorithm adds the shortest edge connecting some node already in the tree to one that
isn’t yet. This continues until all nodes are in the tree (note this happens when there are n - 1
edges, where n is the number of nodes). Initially, A is the only node in our tree.

A

A C
1

A

B

C
1

2

A

B

C

D

1

2

1

CS 61B, Fall 2021, Discussion 13: Graphs 3



A

B

C

D

E
1

2

1

3

A

B

C

D

E

F

1

2

1

3

1

(b) Use Kruskal’s algorithm to find a valid minimum spanning tree of the graph above. If there
are multiple edges with the same cost, process them in alphabetical order. Will Prim’s and
Kruskal’s always return the same MST?

Kruskal’s algorithm goes through every edge in increasing order of weight. If the edge selected
connects two subtrees that haven’t yet been connected, it adds that edge to the MST. This
continues until all nodes are connected into one tree.

A

B

C

D

E

F

1

A

B

C

D

E

F

1

1

CS 61B, Fall 2021, Discussion 13: Graphs 4



A

B

C

D

E

F

1

1

1

A

B

C

D

E

F

1

2

1

1

A

B

C

D

E

F

1

2

1

3

1

Prim’s and Kruskal’s happen to output the same MST here, but it is also possible for Kruskal’s
algorithm to return a different MST based on how its sorting breaks ties. For example, instead
of the C-E edge that was chosen last, we could have chosen the D-E edge. This would create
the following MST:

A

B

C

D

E

F

1

2

1

3
1

CS 61B, Fall 2021, Discussion 13: Graphs 5



(c) Draw the final state of the tree that results from union find operations executed when running
Kruskal’s on the graph above. When selecting a new root, break ties alphabetically.

Without path compression: To run Kruskal’s we need to execute union find operations. This
is so we can find which subtree a node currently belongs to as well as union two subtrees
when we connect them by an edge.

A

C

A

C

B

D

A

C

B

D

E

F

A

C B

D

E

F

CS 61B, Fall 2021, Discussion 13: Graphs 6



A

C B

D

E

F

With path compression: Just like before, to run Kruskal’s we need to execute union find
operations. This is so we can find which subtree a node currently belongs to as well as union
two subtrees when we connect them by an edge. However, with path compression we also
want to compress paths whenever possible. This means that whenever we run a find operation
we compress the path to the root.

A

C

A

C

B

D

A

C

B

D

E

F

CS 61B, Fall 2021, Discussion 13: Graphs 7



A

C B

D

E

F

When we call find(D) to check whether we want to add edge (C, D), we compress D’s path to
the root:

A

C B D

E

F

A

C B D E

F

CS 61B, Fall 2021, Discussion 13: Graphs 8


