CS 61B Discussion 5: Inheritance

Fall 2021

1 Classy Cats

Look at the Animal class defined below.

public class Animal {
protected String name, noise;
protected int age;

public Animal (String name, int age) {

this.name = name;
this.age = age;
this.noise = "Huh?";

}

public String makeNoise () {

if (age < 2) |
return noise.toUpperCase();

}

return noise;

}

public String greet () {
return name + ": " + makeNoise () ;

}

(a) Given the Animal class, fill in the definition of the Cat class so that it makes a "Meow!"
noise when greet () is called. Assume this noise is all caps for kittens, i.e. Cats that are

less than 2 years old.

public class Cat extends Animal {

CS 61B, Fall 2021, Discussion 5: Inheritance

(b) "Animal" is an extremely broad classification, so it doesn’t really make sense to have it be a
class. Look at the new definition of the Animal class below.

public abstract class Animal ({

1
2 protected String name;

3 protected String noise = "Huh?";

4 protected int age;

5

6 public String makeNoise () {

7 if (age < 2) {

8 return noise.toUpperCase();

9 }

10 return noise;

11 }

12

13 public String greet () {

14 return name + ": " + makeNoise () ;
15 }

16

17 public abstract wvoid shout () ;

18 abstract void count (int x);

Fill out the Cat class again below to allow it to be compatible with Animal (which is now
an abstract class) and its two new methods.

public class Cat extends Animal {
public Cat () {

this.name = "Kitty";
this.age = 1;
this.noise = "Meow!";

public Cat (String name, int age) {
this () ;
this.name = name;
this.age = age;

@Override
shout () {
System.out.println(noise.toUpperCase());

@Override

count (int x) {

for (int i = 0; 1 < x; 1i++) {
System.out.println (makeNoise());

CS 61B, Fall 2021, Discussion 5: Inheritance 2

2 The Interfacing CatBus

After discovering that we can implement the Cat class with minimal effort, Professor Hilfinger
decided that he wants to create a CatBus class. CatBuses are Cats that act like vehicles and
have the ability to honk (safety is important!).

a) Given the Vehicle and Honker interfaces, fill out the CatBus class so that CatBuses can
rev their engines and honk at other CatBuses.

interface Vehicle {
/++ Gotta go fast! =/
public void revEngine();

}

interface Honker {
/** HONQUE! x/
void honk () ;

}

public class CatBus extends , implements , {

@QOverride
revEngine () {

System.out.println ("Purrrrrrr");

}

@Override
honk () {
System.out.println ("CatBus says HONK");

}

/++ Allows CatBus to honk at other CatBuses. */
public void conversation (CatBus target, int duration) ({
for (int i = 0; 1 < duration; i++) {
honk () ;
target.honk () ;

}

b) After a few hours of research, Professor Hilfinger discovered that animals of type Goose
are also avid Honkers! Modify the conversation method so that CatBuses can honk at

CatBuses and Goosees.

/** Allows CatBus to honk at ANY target that can honk back. #*/

public void conversation(target, int duration) {
for (int i = 0; i < duration; i++) {
honk () ;

target.honk () ;

CS 61B, Fall 2021, Discussion 5: Inheritance 3

O 0 N N N R W N -

O 0 N N W R W N ==

3 Raining Cats & Dogs

In addition to Animal and Cat from Problem la, we now have the Dog class! (Assume that the
Cat and Dog classes are both in the same file as the Animal class.)

class Dog extends Animal {
public Dog (String name, int age) {
super (name, age);
noise = "Woof!";
}
public void playFetch () {
System.out .println ("Fetch,

" + name + "!™");

}

Consider the following main function in the Animal class. Decide whether each line causes a
compile time error, a runtime error, or no error. If a line works correctly, draw a box-and-pointer
diagram and/or note what the line prints. It may be useful to refer to the Animal class back on
the first page.

public static void main (String[] args) {

Cat nyan = new Animal ("Nyan Cat", 5); (A)
Animal a = new Cat ("Olivia Benson", 3); (B)
a = new Dog ("Fido", 7); (C)
System.out.println(a.greet ()); (D)
a.playFetch(); (E)

Dog dl = a; (F
Dog d2 = (Dog) aj; (G
(H
(I

d2.playFetch () ;
(Dog) a.playFetch();

Animal imposter = new Cat ("Pedro", 12); (J)
Dog fakeDog = (Dog) imposter; (K)

Cat failImposter = new Cat ("Jimmy", 21); (L)
Dog failDog = (Dog) faillImposter; (M)

CS 61B, Fall 2021, Discussion 5: Inheritance 4

4 Extra: An Exercise in Inheritance Misery

Cross out any lines that cause compile or runtime errors. What does the main program output
after removing those lines?

Moral of the story: Fields become hidden when you redefine them in the subclass. If possible, you
should avoid doing so or else your code may become confusing.

N=l I e Y " R S° e

_ =
o= O

13

class A {
int x = 5;
public void
public void
public void

}

class B extends
int x = 10;
public void
public void
public void

}

class C extends
int y = x +
public void
public void
public void
public void

}

class D {

public static void main (String[] args)
A b0 = new B();
System.out .println (b0.x); (A)
b0.ml (); (B)
b0.m2 () ; (C)
b0.m3 () ; (D)
B bl = new B();
bl.m3(); (E)
bl.mé () ; (F)
A cO0 = new C();
cO0.ml(); (G)
A al = (Rn)
C c2 = (C)
c2.m4 () ; (H)
((C) c0).m3(); (1)
b0.update () ;
b0.ml () ; (J)

CS 61B, Fall 2021, Discussion 5: Inheritance

{System.out.println ("Aml->
{System.out.println ("Am2->

out.println ("Bm2->
out.println ("Bm3->
out.print ("Bm4—>

out.println
out.println
out.println
out.println

—~ o~~~

")

+ this.x);}

+ super.x);}
super.m2 () ; }

super.x);}
super.super.x) ; }

+ + + +

super.y) ; }

