
CS 61B Discussion 7: Asymptotics Fall 2021
1 Basic Algorithmic Analysis
For each of the following function pairs f and g, list out the Θ,Ω,O relationships between f and
g, if any such relationship exists. For example, f (x) ∈ O(g(x)).

1. f (x) = x2, g(x) = x2 + x

2. f (x) = 5000000x3, g(x) = x5

3. f (x) = log(x), g(x) = 5x

4. f (x) = ex, g(x) = x5

5. f (x) = log(5x), g(x) = x

2 Practice with Runtime
For each of the following functions, find the Big-Theta expression for the runtime of the function
in terms of the input variable n.

You may find the following relations helpful:

1+2+3+4+ · · ·+N = Θ(N2)

1+2+4+8+ · · ·+N = Θ(N)

1. For this problem, you may assume that the static method constant runs in Θ(1) time.
1 public static void bars(int n) {
2 for (int i = 0; i < n; i += 1) {
3 for (int j = 0; j < i; j += 1) {
4 System.out.println(i + j);
5 }
6 }
7

8 for (int k = 0; k < n; k += 1) {
9 constant(k);

10 }
11 }

CS 61B, Fall 2021, Discussion 7: Asymptotics 1



2. Determine the runtime for barsRearranged.
1 public static void cowsGo(int n) {
2 for (int i = 0; i < 100; i += 1) {
3 for (int j = 0; j < i; j += 1) {
4 for (int k = 0; k < j; k += 1) {
5 System.out.println("moove");
6 }
7 }
8 }
9 }

10

11 public static void barsRearranged(int n) {
12 for (int i = 1; i <= n; i *= 2) {
13 for (int j = 0; j < i; j += 1) {
14 cowsGo(j);
15 }
16 }
17 }

3 A Bit on Bits
Recall the following bit operations and shifts:

1. Mask (x & y): yields 1 only if both bits are 1.
01110 & 10110 = 00110

2. Set (x | y): yields 1 if at least one of the bits is 1.
01110 | 10110 = 11110

3. Flip (x ^ y): yields 1 only if the bits are different.
01110 ^ 10110 = 11000

4. Flip all (~ x): turns all 1’s to 0 and all 0’s to 1.
~ 01110 = 10001

5. Left shift (x << left_shift ): shifts the bits to the left by left_shift places, filling in the
right with zeros.
10110111 << 3 = 10111000

6. Arithmetic right shift (x >> right_shift ): shifts the bits to the right by right_shift places,
filling in the left bits with the current existing leftmost bit.
10110111 >> 3 = 11110110
00110111 >> 3 = 00000110

7. Logical right shift (x >>> right_shift ): shifts the bits to the right by right_shift places,
filling in the left with zeros.
10110111 >>> 3 = 00010110

CS 61B, Fall 2021, Discussion 7: Asymptotics 2



Implement the following two methods. For both problems, i=0 represents the least significant bit,
i=1 represents the bit to the left of that, and so on.

1. Implement isBitIOn so that it returns a boolean indicating if the ith bit of num has a
value of 1. For example, isBitIOn(2, 0) should return false (the 0th bit is 0), but
isBitIOn(2, 1) should return true (the 1st bit is 1).
/** Returns whether the ith bit of num is a 1 or not. */
public static boolean isBitIOn(int num, int i) {

int mask = 1 __________________________________________;

return ________________________________________________;
}

2. Implement turnBitIOn so that it returns the input number but with its ith signifi-
cant bit set to a value of 1. For example, if num is 1 (1 in binary is 01), then calling
turnBitIOn(1, 1) should return the binary number 11 (aka 3).
/** Returns the input number but with its ith bit changed to a 1. */
public static int turnBitIOn(int num, int i) {

int mask = 1 __________________________________________;

return ________________________________________________;
}

CS 61B, Fall 2021, Discussion 7: Asymptotics 3


