
CS 61B Discussion 7: Asymptotics Fall 2021
1 Basic Algorithmic Analysis
For each of the following function pairs f and g, list out the Θ,Ω,O relationships between f and
g, if any such relationship exists. For example, f (x) ∈ O(g(x)).

For all the problems below, you should be able to eye the asymptotic relations without thinking
about the limits that rigorously define them.

1. f (x) = x2, g(x) = x2 + x

f (x) ∈Θ(g(x)): When comparing polynomials the only thing that matters is the degree.

2. f (x) = 50000x3, g(x) = x5

f (x) ∈ O(g(x)): Same as above, and 5 > 3.

3. f (x) = log(x), g(x) = 5x

f (x) ∈ O(g(x)): Polynomials always grow faster than logarithms.

4. f (x) = ex, g(x) = x5

f (x) ∈Ω(g(x)): Exponential growth is always faster than polynomial growth.

5. f (x) = log(5x), g(x) = x

f (x) ∈Θ(g(x))

Explanation 1: It is useful to remember that logb(a) and logc(a) differ by a constant multiple
for any pair (b,c). In particular, log(5x) = α log5(5

x) = αx for some α . (If you want to find
the value of α , try using the change of base formula.)

Explanation 2: Using the power rule of logarithms, log(5x) = x log5.

CS 61B, Fall 2021, Discussion 7: Asymptotics 1



2 Practice with Runtime
For each of the following functions, find the Big-Theta expression for the runtime of the function
in terms of the input variable n.

You may find the following relations helpful:

1+2+3+4+ · · ·+N = Θ(N2)

1+2+4+8+ · · ·+N = Θ(N)

1. For this problem, you may assume that the static method constant runs in Θ(1) time.
1 public static void bars(int n) {
2 for (int i = 0; i < n; i += 1) {
3 for (int j = 0; j < i; j += 1) {
4 System.out.println(i + j);
5 }
6 }
7

8 for (int k = 0; k < n; k += 1) {
9 constant(k);

10 }
11 }

Θ(n2). For an explanation, see below.

Let’s start our analysis with the second for loop beginning at line 8.

1. For each loop iteration, we call constant(k) exactly once (line 9). We are given
that constant runs in Θ(1) time, which means that the runtime of constant does
not depend on the input to the method bars (the value of n).

2. The for loop runs a total of n iterations. Therefore, the total runtime of the for loop at
line 8 is (total number of iterations) · (work per iteration) = n ·1 = n.
Note: You can only multiply (total number of iterations) by (work per iteration) if
the amount work done for each iteration is the same for every iteration. In our case,
constant(k) always runs in Θ(1) time. This will not always be the case, as we will
see in a bit.

Now let’s look at the nested for loop beginning at line 2.

3. For each iteration of the inner for loop, we call System.out.println(i + j)
exactly once. Since the runtimes for calling System.out.println and evaluating
i + j do not depend on the value of n, the runtime for each call to
System.out.println(i + j) is Θ(1).

4. The inner for loop (line 3) runs a total of i times. The actual value of i changes each
time the inner loop runs (it depnds on the value set by the outer for loop). Each time
the inner for loop runs, its runtime is (total number of iterations) · (work per iteration)
= i ·1 = i (note that we cannot evaluate i just yet, as the value of i changes over time).
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5. The outer for loop (line 2) runs a total of n times. The amount of work done inside of
the inner for loop is i (this was calculated from the previous step). Unlike earlier, we
are not allowed to multiply the number of iterations by the work done for each iteration
because the value of i changes for each iteration of the outer loop. Instead, we can add
up the total amount of work being done across all iterations of the outer for loop. Below
is a table showing the amount of work done for each iteration of the outer loop.

i 0 1 2 3 ... n - 1
work per iteration 0 1 2 3 ... n - 1

To get the total runtime of the nested for loop, all we have to do is add up the work
done for all the iterations:

0+1+2+3+ ...+n−1 =
n−1

∑
i=0

i =
(n−1)n

2
=

n2−n
2

=⇒ n2

.
Therefore, the total runtime for the nested for loop is Θ(n2).

All that’s left is to sum up the runtimes!

6. We calculated a runtime of n for the for loop at line 10, and n2 for our nested for
loop at line 2. Therefore, our total runtime for bars is the sum of the two runtimes:
Θ(n+n2) =⇒ Θ(n2).

2. Determine the runtime for barsRearranged.
1 public static void cowsGo(int n) {
2 for (int i = 0; i < 100; i += 1) {
3 for (int j = 0; j < i; j += 1) {
4 for (int k = 0; k < j; k += 1) {
5 System.out.println("moove");
6 }
7 }
8 }
9 }

10

11 public static void barsRearranged(int n) {
12 for (int i = 1; i <= n; i *= 2) {
13 for (int j = 0; j < i; j += 1) {
14 cowsGo(j);
15 }
16 }
17 }

Θ(n). See the next page for an explanation.
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We’ll begin by determining the runtime of cowsGo.

1. The method cowsGo prints "moove" many times to standard output. Printing "moove"
to standard output takes constant time (this was determined from the previous question).

2. Now we’ll look at the total number of times "moove" gets printed. Note that the number
of times "moove" gets printed out doesn’t depend on the value of the input to cowsGo
(n). In fact, cowsGo always prints out "moove" a constant number of times, regardless
of the value of n. Therefore, the runtime of cowsGo is Θ(1).

Now we’ll begin analyzing barsRearranged.

3. The inner for loop (line 13) calls the method cowsGo exactly once per iteration. From
the previous step, cowsGo has a constant runtime. Therefore, each iteration of the
inner for loop does Θ(1) work.

4. The inner for loop (line 13) runs a total of i times. The value of i changes each time
the inner loop runs and depends on the value set by the outer loop. Each time the inner
loop runs, its runtime is (total number of iterations) · (work per iteration) = i · 1 = i.
Again, we cannot evaluate i just yet as its value changes over time.

5. Now, let’s count the number of times the outer for loop runs. We see that i is initialized
to a value of 1 and is doubled until it reaches the value of n. As a result, the outer loop
runs a total of log(n) times. The amount of work done inside of the of the inner for
loop is i (this was calculated from the previous step). Because the value of i changes
for each iteration of the outer loop, we will add up the total amount of work being done
across all iterations of the outer loop to get our final runtime. Below is a table showing
the amount of work done for each iteration of the outer loop.

i 1 2 4 8 ... n
work per iteration 1 2 4 8 ... n

To get the total runtime of the nested for loop, all we have to do is add up the work
done for all the iterations:

1+2+4+8+ ...+n = 20 +21 +22 +23 + ...+2log2(n) =
log2n

∑
i=0

2i ∈Θ(2n) =⇒ Θ(n)

.
Another way to think of it is to rearrange the sum as follows:

1+2+4+8+ ...+n = n+
n
2
+

n
4
+

n
8
+ ...+4+2+1 =

log2n

∑
i=0

n
2i ∈Θ(2n) =⇒ Θ(n)

.

Therefore, the total runtime for the barsRearranged is Θ(n).
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A note on the following expression (let’s call it expression 1):

log2n

∑
i=0

2i =
log2n

∑
i=0

n
2i ∈Θ(2n)

We can arrive at Θ(2n) using the equation for finding the sum of a finite geometric series,
which is defined below (expression 2).

Sn =
n

∑
i=1

a1ri−1 = a1(
1− rn

1− r
)

We can adapt the equation above to help us evaulate expression 1:

log2n

∑
i=0

2i =
log2n+1

∑
i=1

2i−1

=
log2n+1

∑
i=1

1 ·2i−1

= 1 · (1−2(log2 n+1)

1−2
)

=
1− (2 ·2log2 n)

−1
=−1+2n
= 2n−1 ∈Θ(2n) =⇒ Θ(n)
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3 A Bit on Bits
Recall the following bit operations and shifts:

1. Mask (x & y): yields 1 only if both bits are 1.
01110 & 10110 = 00110

2. Set (x | y): yields 1 if at least one of the bits is 1.
01110 | 10110 = 11110

3. Flip (x ^ y): yields 1 only if the bits are different.
01110 ^ 10110 = 11000

4. Flip all (~ x): turns all 1’s to 0 and all 0’s to 1.
~ 01110 = 10001

5. Left shift (x << left_shift ): shifts the bits to the left by left_shift places, filling in the
right with zeros.
10110111 << 3 = 10111000

6. Arithmetic right shift (x >> right_shift ): shifts the bits to the right by right_shift places,
filling in the left bits with the current existing leftmost bit.
10110111 >> 3 = 11110110
00110111 >> 3 = 00000110

7. Logical right shift (x >>> right_shift ): shifts the bits to the right by right_shift places,
filling in the left with zeros.
10110111 >>> 3 = 00010110

Implement the following two methods. For both problems, i=0 represents the least significant bit,
i=1 represents the bit to the left of that, and so on.

1. Implement isBitIOn so that it returns a boolean indicating if the ith bit of num has a
value of 1. For example, isBitIOn(2, 0) should return false (the 0th bit is 0), but
isBitIOn(2, 1) should return true (the 1st bit is 1).
/** Returns whether the ith bit of num is a 1 or not. */
public static boolean isBitIOn(int num, int i) {

int mask = 1 << i;
return (mask & num) != 0;

}

2. Implement turnBitIOn so that it returns the input number but with its ith signifi-
cant bit set to a value of 1. For example, if num is 1 (1 in binary is 01), then calling
turnBitIOn(1, 1) should return the binary number 11 (aka 3).
/** Returns the input number but with its ith bit changed to a 1. */
public static int turnBitIOn(int num, int i) {

int mask = 1 << i;
return num | mask;

}
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