
CS 61B Asymptotic Analysis Fall 2021

1 Hey you watchu gon do?
For each example below, there are two algorithms solving the same problem. Given the asymptotic
runtimes for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither
is always faster, explain why. Assume the algorithms have very large input (i.e. N is very large).

(a) Algorithm 1: Θ(N), Algorithm 2: Θ(N2)

(b) Algorithm 1: Ω(N), Algorithm 2: Ω(N2)

(c) Algorithm 1: O(N), Algorithm 2: O(N2)

(d) Algorithm 1: Θ(N2), Algorithm 2: O(logN)

(e) Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)

(a) Algorithm 1: Θ(N) - straight forward, Θ gives tightest bounds

(b) Neither, something in Ω(N) could also be in Ω(N2)

(c) Neither, something in O(N2) could also be in O(1)

(d) Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(logN) while Algorithm 1
is constrained on best and worst case by Θ(N2).

(e) Neither, Algorithm 1 CAN be faster, but is not guaranteed - it is guaranteed to be "as fast as or
faster" than Algorithm 2.

Why do we need to assume that N is large?

Asymptotic bounds often only make sense as N gets large, because constant factors may result in
a function with a smaller order of growth growing faster than a faster one. For example, take the
functions 1000n and n2. n2 is asymptotically larger than 1000n, but for small n, it will seem that
1000n is larger than n2.
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2 Best and Worst Case
For the following functions, provide asymptotic bounds for the best case and worst case runtimes
in Θ(·) notation.

(a) Give the best and worst case runtimes in terms of M and N. Assume that slam() ∈Θ(1) and
returns a boolean.

1 public void comeon(int M, int N) {
2 int j = 0;
3 for (int i = 0; i < N; i += 1) {
4 for (; j < M; j += 1) {
5 if (slam(i, j))
6 break;
7 }
8 }
9

10 for (int k = 0; k < 1000 * N; k += 1) {
11 System.out.println("space jam");
12 }
13 }

• Best case: We can see that there is a doubly nested for loop. The inner loop contains an
if statement and breaks out of the inner loop if slam(i,j). The best case behaviour
will be when the inner loop always immediately breaks (this will happen if slam(i,j)
always returns true) causing the inner loop to always run in constant time. In this case we
will still need to iterate through the entire loop from i= 0 to i=N, which will take linear
time. Additionally there is a second loop that will also run in linear time regardless of the
conditions we are imposing on slam(i,j). Therefore the runtime of comeon(M,N)
will be Θ(N) in the best case.

• Worst case: Contrary to the above, the worst case behavior will correspond to when
the function slam(i,j) always returns false, which will cause the loop to never break
early. For this we notice that the variable j is declared outside of the for loop, instead of
inside as we would typically expect. This means that j will only take on the values from
0 to M and similarly i will only take on the values from 0 to N. One way to visualize the
total amount of work done is to look at the number of times the variables i or j are incre-
mented in this worst case. The varibale i will be incremented N times and the varibale j
will be incremented M times. This means the total amount of work done by the first part
of the code will be Θ(M+N). We additionally will still have the second loop which will
run in linear time with respect to N. Therefore the runtime of comeon(M, N) will be
Θ(M+N) in the worst case.

Answer: For comeon(M,N) the runtime is Θ(N) in the best case and Θ(M+N) in the worst
case.

CS 61B, Fall 2021, Asymptotic Analysis 2



(b) Extra: Give the best case and worst case runtimes for find in terms of N, where N is the
length of the input array arr.

1 public static boolean find(int tgt, int[] arr) {
2 int N = arr.length;
3 return find(tgt, arr, 0, N);
4 }
5 private static boolean find(int tgt, int[] arr, int lo, int hi) {
6 if (lo == hi || lo + 1 == hi) {
7 return arr[lo] == tgt;
8 }
9 int mid = (lo + hi) / 2;

10 for (int i = 0; i < mid; i += 1) {
11 System.out.println(arr[i]);
12 }
13 return arr[mid] == tgt || find(tgt, arr, lo, mid)
14 || find(tgt, arr, mid, hi);
15 }

Answer: For find the best case runtime is Θ(N) and the worst case runtime is Θ(N2).

This question is fairly tricky, and for most intents and purposes this code would be considered
buggy, but nonetheless we can consider the runtime of this question. First we need to define
what we should consider our argument size to be. We see that for each call we are passing in
the same array, so this will always be a fixed size N and does not represent the argument size of
a function call. The amount of the array to be iterated over is determined by the variable mid
= (hi + lo) / 2. We would expect the size of the chunk of the array that we are looking
at to be defined by the difference between lo and hi, but as we stated above the code is buggy
and the for loop begins at position 0 not at position lo as would typically be expected. As such
there is a linear amount of work done at each call to this function with respect to the value of
mid.

Now we see that in each function call there will be up to two recursive calls and the difference
between lo and hi will be geometrically decreased by a factor of two each time. Depending
on the evaluation of the expression arr[mid] == tgt, the boolean expression might be
short circuited, causing neither of the two recursive calls to be evaluated. Thus the worst case
behavior will be when the boolean expression is never short circuited, and the best case be-
havior will be when the boolean expression is short circuited immediately (on the first call to
find). In the worst case the height of the tree will be log2(N). A more detailed explanation
for how this can be derived is given in the following questions.

We will begin with the worst case when the short circuiting never happens and there are always
two recursive calls made. At the first function call we will have mid = (0+N)/2 = N/2, so
we will do N/2 work. At each function call we will make two recursive calls, one with hi =
hi and the other with hi = (lo + hi) / 2. So at the next level we will have two nodes,
with N/4 and 3N/4 work being done. We can envision a tree of recursive function calls as
below where the nodes contain values of both lo and hi separated by commas.

CS 61B, Fall 2021, Asymptotic Analysis 3



0,N

0, N
2

0,1

N
2 ,N

0, N
4

N
4 ,

N
2

N
2 ,

3N
4

3N
4 ,N

N−1,N

N

We can translate from this tree into a tree where the nodes correspond to value of mid or the
amount of work done in each of the nodes/recursive calls which leaves us with the following
tree. This can be created by computing the mid value based off of the lo and hi values in the
tree above.
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With this in mind we can now extract the total amount of work being done out of this tree, by
looking at each level of the tree and determining the amount of work being done at each level.
By summing the amounts per each layer then we will end up with the total amount of work
being done. We can summarize the amount of work done at each level in the following table:

Layer Number Sum Total Work
1 N

2
N
2

2 N
4 + 3N

4 N
3 N

8 + 3N
8 + 5N

8 + 7N
8 2N

4 N
16 +

3N
16 + 5N

16 + 7N
16 + 9N

16 + 11N
16 + 13N

8 + 15N
16 4N

...
...

...
log2(N) 1+2+3+ · · ·+N Θ(N2)
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We notice in the last row of our table, which corresponds to the lowest level of the tree we will
have N function calls, where the first one will look at only the first element, the second will
look at the first two, etc. This continues until the last function call which will look at all N
elements in the array, so this level corresponds to the summation of the first N integers which
we found above to be in Θ(N2). To find the total amount of work done we simply have to sum
the last column which leaves us with the following.

N/2+N +2N +4N + · · ·+N2

= N/2+N(1+2+4+ · · ·+N) ∈Θ(N2)

For this last step we also make use of summation of the powers of two up to N we found above.
All of this results in worst case Θ(N2) runtime.

We will now consider the best case runtime. As specified above the best case will be when
there are no recursive calls made as the boolean expression of function calls short circuits after
the evaluation of arr[mid] == tgt. In this case we still must iterate through the array
starting at 0 and ending at mid = (lo + hi) / 2. Since we are looking at the first call
to find we will have that lo = 0 and hi = N which means that mid = (0 + N) / 2
= N / 2. This means that this loop will do a linear amount of work with respect to N / 2,
which will be a Θ(N) operation. Again in the best case arr[mid] == tgt and we short
circuit, so we will not make either of the recursive calls. This linear operation is all of the work
done in the best case, thus find is Θ(N) in the best case.
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3 Best and Worst Case with Recursion
For the following recursive functions, provide asymptotic bounds for the best case and worst case
runtimes in Θ(·) notation.

(a) Give the runtime in terms of N.
1 public void andslam(int N) {
2 if (N > 0) {
3 for (int i = 0; i < N; i += 1) {
4 for (int j = 1; j < 1024; j *= 2) {
5 System.out.println(i + j);
6 }
7 }
8 andslam(N / 2);
9 }

10 }

Answer: For andslam(N) the runtime is Θ(N) in the best and worst case.

We will follow the process as described above.

1. First of all we can see that the argument to the recursive call is halved every time so that the
calls will have values N,N/2,N/4, ...,1. We are diving the original argument N by 2 until
the argument passed in becomes 1 (technically the base case will be one function call after
this when the argument passed in is 0 as 1 / 2 = 0 with Java integers). This means that the
height of the tree will be log2(N). Another way to see this is if we define h as the height
of the tree, then we can see that N/2h = 1 (if we know the value at the top of the tree is N
and the bottom of the tree is 1, then how many times should we divide N by 2 to reach 1).
Solving for h we have N = 2h =⇒ h = log2(N).

2. We can see that in the andslam function there is only one recursive function call made,
so the branching factor will be 1.

3. Inside each function call there is a single for loop that will do linear work with respect to the
input argument, e.g. the first function call will do N work, the second call will do N/2 work,
then N/4 work, etc. From the branching factor, the height of the tree, and the observation
of how the input size is changing we can draw the following tree to represent the amount
of work being done. Here the values inside the nodes are the size of the arguments passed
into each successive function call.
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4. The total amount of work being done is the summation of all of the work being done in
this tree. We notice that the amount of work being done in a given node is the same as the
argument passed in (as a linear amount of work is being done in each of the function calls).
This means that the values in the above tree will also correspond to the work being done in
each node. With a branching factor of 1 we will have the total amount of work being done
as N +N/2+N/4+ · · ·+ 4+ 2+ 1. From the above work we know that this summation
is Θ(N). For this function we see that regardless of any configuration of the input size the
function will perform the same amount of work; there is no difference between the best and
worst case. Thus we can say that andslam is Θ(N) or the function is best and worst case
Θ(N).

(b) Give the runtime for andwelcome(arr, 0, N) in terms of N, where N is the length of
the input array arr. Math.random() returns a double with a value from the range [0,1).

1 public static void andwelcome(int[] arr, int low, int high) {
2 System.out.print("[ ");
3 for (int i = low; i < high; i += 1) {
4 System.out.print("loyal ");
5 }
6 System.out.println("]");
7 if (high - low > 1) {
8 double coin = Math.random();
9 if (coin > 0.5) {

10 andwelcome(arr, low, low + (high - low) / 2);
11 } else {
12 andwelcome(arr, low, low + (high - low) / 2);
13 andwelcome(arr, low + (high - low) / 2, high);
14 }
15 }
16 }

Answer: For andwelcome(arr, 0, N) the runtime is Θ(N) in the best case and Θ(N logN)
in the worst case.

For this question we will have to determine the best case and the worst case of the function
when calculating the runtime of the program. The condition of what will comprise of the best
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and worst case will be conditioned on the behavior of the calls to Math.random(). The
result, stored as coin will determine whether there will be either one or two recursive calls.
The best case will correspond to the probabilisitcally unlikely outcome that every single call
to Math.random will produce a result that is greater than 0.5, thus there will always be only
recursive call made. The worst case behavior corresponds to the equally unlikely case that
every single call to Math.random will produce a result that is less than 0.5, and as such
there will always be two recursive calls made. We will analyze the best and worst case below:

• Worst case:
1. This function takes an array, and looks at smaller and smaller chunks of the array as

passed defined by the arguments to low and high. We can see that the size of the
chunk considered at each level is geometrically decreasing, so we will consider the
full array, then two halves, then four quarters, etc. At the deepest level of the tree,
we can think of this being the furthest we can split apart an array, into elements, so
the size of the chunks at the bottom level will be 1. The height of this tree can be
calculated as above to be log2(N).

2. In the worst case as described above we will always make two recursive calls, which
will mean that the branching factor will be 2. Here we can notice that the total
number of nodes at a given depth i will be 2i (where the root node corresponds to
depth 1). Thus there will be 1 node at the top level, two nodes at the next, four at the
next, etc.

3. The amount of work being done in each of the function calls will be done by the for
loop in the beginning of the function. This loop will iterate through the array starting
at position low and ending at the position high, so the amount of work done will
be linear with respect to high - low. We can visualize the recursive calls using
the following tree. Here the values inside the nodes will also correspond to the size
of the arguments (for this it will correspond to high - low).
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4
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4. To summarize the tree we can also construct a table to analyze the amount of work
done.

# Nodes Work per Node Total Work
1 N N
2 N / 2 N
4 N / 4 N
...

...
...

N 1 N
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Here we can see that at each level of the tree there will be N work being done. We
also remember that the height of the tree is log(N), so the total amount of work being
done is Θ(N log(N)). We could also achieve this result using summations as follows:

∑
layers in the tree

# nodes
layer

· amount of work
1 node

log(N)

∑
i=0

2i · N
2i =

log(N)

∑
i=0

N ∈Θ(N log(N))

• Best Case: We notice that if only one recursive function call is performed the runtime
analysis will actually be identical to what we did for the function andslam, so in the
best case this function will be Θ(N)

(c) Give the runtime in terms of N.
1 public int tothe(int N) {
2 if (N <= 1) {
3 return N;
4 }
5 return tothe(N - 1) + tothe(N - 1) + tothe(N - 1);
6 }

Answer: For tothe(N) the runtime is Θ(3N) in the best and worst case.

We notice here that regardless of what our input size is, the function will behave the same. As
such the best case and the worst case will be the same. We will perform the same steps as we
did above.

1. The argument passed into each of the recursive calls will be decremented by one each time.
To reach the base case we will have to decrement the argument N times to reach a number
that is less than or equal to 1. Therefore the height of the tree will be N.

2. Each function call will make three recursive calls, so we will have a branching factor of
three. Similar to above we can see that the number of nodes at a given depth i will be 3i

(where the root node corresponds to depth 1). We can visualize the tree of recursive calls as
follows (the values inside of the nodes will be the size of the input, not the amount of work
being done).
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3. The only work being done in a call to the function will be the checking of the base case,
the function calls, and the addition of the results. This will be a constant amount of work,
so the overall runtime of the function can be broken down into determining the number of
nodes in the tree.

4. We can again first summarize the information from the tree in the following table

Argument # Nodes Work per Node Total Work
N 1 1 1

N - 1 3 1 3
N - 2 9 1 9

...
...

...
...

1 3N 1 3N

From here we can see that the total amount of work being done is 1+3+9+ · · ·+3N . Using
the above general formula for geometric series we can see that 1+3+9+ · · ·+3N ∈Θ(3N).
We can also acheive this result through summations as follows:

∑
layers in the tree

# nodes
layer

· amount of work
1 node

N

∑
i=1

3i ·1 = 1+3+9+ · · ·+3N ∈Θ(3N)
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Best and Worse Case
It is important to remember that with asymptotics, we will only consider the runtime for cases
where the value or size of the input becomes very large (e.g. as the length of an array approaches
infinity). This means that we cannot derive a best or worst case runtime from a scenario where our
input is small (e.g. N = 1 or some other small value, or the length of the array is 1).

Consider the following method:
public static int foo(int N) {

if (N <= 1) { return 1; }
else { /* More code here... */ }

}

It would be incorrect to say "the best case runtime occurs when N = 1, resulting in a best case
runtime of Θ(1)". To find the best and worst case runtimes of a function, we should only be con-
sidering very large inputs that might cause the runtime to change.

When describing a best or worst case runtime, we want to provide a tight bound using Θ(·) no-
tation whenever possible to be as precise as possible. In the situation where the function we are
analyzing has different asymptotic runtimes depending on the configuration of the inputs, we will
often provide two bounds (best case and worst case) to allow us to keep providing precise runtimes.

Consider the following method:
public static void bar(int N) {

if (N % 2 == 0) { /* Runs in log(N) time. */ }
else { /* Runs in N! (N factorial) time. */ }

}

Although it would be true to state that bar runs in O(N!) time, we can be more specific! In order
to provide a more precise runtime and use Θ(·) notation, we can provide two runtimes: a best case
and worst case runtime. It would be more precise to say that in the best case bar runs in Θ(logN)
time, and in the worst case it runs in Θ(N!) time.

Some Important Sums
There are several classes of sums that appear fairly often in runtime problems. The following
points briefly explain how they can be derived:

• Sum of an arithmetic sequence: The general solution to determine the sum of an arithmetic
sequence (the sum of the first consecutive N natural numbers) can be interpreted as the
average of the first and last elements, multiplied by the total number of elements:

1+2+3+ · · ·+(N−2)+(N−1)+N =
1
2
(1+N) ·N ∈Θ(N2)
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• Sum of a geometric sequence: To determine the sum of the first N terms of a geometric
series we can use the following formula (a is the first term of the series, r is the common
ratio):

a+ar+ar2 +ar3 + ...+arn−1 =
n−1

∑
i=0

ari = a · (1− rn

1− r
)

Here’s an example of how we can apply this formula to determine the runtime of a function:
1 public static void honk(int N) {
2 for (int i = 0; i <= N; i *= 2) {
3 for (int j = 0; j < i; j += 1) {
4 System.out.println("HONK"); // Printing takes constant time.
5 }
6 }
7 }

The inner for loop (line 3) runs a total of i times and does a constant amount of work for
each iteration. Each time the inner for loop runs, its runtime is (total number of iterations) ·
(work per iteration) = i · 1 = i. The outer for loop runs a total of logN iterations and does i
work for each iteration. To get the total runtime of honk, we sum up the work done for each
iteration of the outer loop:

1+2+4+8+ ...+N = 20 +21 +22 +23 + ...+2log2N

=
log2N

∑
i=0

2i

=
1−2log2N+1

1−2
∈Θ(2N) =⇒ Θ(N)

In our runtime analysis of honk, our ratio was 2 and our last term was N. If we solve for
the generic case where the ratio is r and the last term is some function of N, f (N), we will
eventually get the following result:

1+ r+ r2 + r3 + · · ·+ f (N)/r+ f (N) =
r f (N)

r−1
∈Θ( f (N))

This is a powerful and general result that means that for any geometric series we see in a
runtime problem, the runtime will run with respect to whatever the last term is.
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Recursive Runtime Tips
A helpful way to analyze the runtime of a recursive function is to consider a tree which represents
all of the function calls. In doing this you might wish to determine the following:

1. Determine the height of the tree. There are various ways in which to do this which we be
shown throughout the problems below.

2. Determine the branching factor. This is typically the number of recursive function calls that
are made from each call of the function. You can also use the branching factor in determining
the number of nodes at any given layer of the tree.

3. Determine the amount of work done at each node relative to the input size. We should be
careful here as this may or may not be the same amount of work being done at every node in
a given level of the tree.

4. Calculate the entire amount of work being done in the entire function call by:

∑
layers in the tree

# nodes
layer

· amount of work
1 node
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