
CS 61B Heaps and Hashing
Fall 2021 Exam Prep Discussion 10: October 25, 2021

1 Fill in the Blanks
Fill in the following blanks related to min-heaps. Let N is the number of elements

in the min-heap. For the entirety of this question, assume the elements in the

min-heap are distinct.

1. removeMin has a best case runtime of and a worst case

runtime of .

2. insert has a best case runtime of and a worst case run-

time of .

3. A or traversal on a min-heap may

output the elements in sorted order. Assume there are at least 3 elements in

the min-heap.

4. The fourth smallest element in a min-heap with 1000 elements can appear in

places in the heap.

5. Given a min-heap with 2N − 1 distinct elements, for an element

• to be on the second level it must be less than ele-

ment(s) and greater than element(s).

• to be on the bottommost level it must be less than

element(s) and greater than element(s).

Hint: A complete binary tree (with a full last-level) has 2N − 1 elements,

with N being of levels.



2 Heaps and Hashing

2 Heap Mystery
We are given the following array representing a min-heap where each letter repre-

sents a unique number. Assume the root of the min-heap is at index zero, i.e. A

is the root. Note that there is no significance of the alphabetical ordering, i.e. just

because B precedes C in the alphabet, we do not know if B is less than or greater

than C.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is

either a removeMin or an insert. The resulting state of the min-heap is shown

below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first op-

eration has already been filled in for you!

1. removeMin()

2.

3.

4.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We

recommend considering which elements were compared to reach the final array.

1. X D

2. X C

3. B C

4. G X



Heaps and Hashing 3

3 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int charisma;

3 String name;

4 TA(String name, int charisma) {

5 this.name = name;

6 this.charisma = charisma;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return charisma;

16 }

17 }

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA sohum = new TA("Sohum", 10);

3 TA vivant = new TA("Vivant", 20);

4 map.put(sohum, 1);

5 map.put(vivant, 2);

6

7 vivant.charisma += 2;

8 map.put(vivant, 3);

9

10 sohum.name = "Vohum";

11 map.put(vivant, 4);

12

13 sohum.charisma += 2;

14 map.put(sohum, 5);

15

16 sohum.name = "Sohum";

17 TA shubha = new TA("Shubha", 24);

18 map.put(shubha, 6);



4 Heaps and Hashing

4 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors

and briefly explain why they are incorrect and in which situations would the bug

cause problems.

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }


	Fill in the Blanks
	Heap Mystery
	Hashing Gone Crazy
	Buggy Hash

