
CS 61B Heaps and Hashing
Fall 2021 Exam Prep Discussion 10: October 25, 2021

1 Fill in the Blanks
Fill in the following blanks related to min-heaps. Let N is the number of elements

in the min-heap. For the entirety of this question, assume the elements in the

min-heap are distinct.

1. removeMin has a best case runtime of and a worst case

runtime of .

2. insert has a best case runtime of and a worst case run-

time of .

3. A or traversal on a min-heap may

output the elements in sorted order. Assume there are at least 3 elements in

the min-heap.

4. The fourth smallest element in a min-heap with 1000 elements can appear in

places in the heap.

5. Given a min-heap with 2N − 1 distinct elements, for an element

• to be on the second level it must be less than ele-

ment(s) and greater than element(s).

• to be on the bottommost level it must be less than

element(s) and greater than element(s).

Hint: A complete binary tree (with a full last-level) has 2N − 1 elements,

with N being of levels.

Solution:

1. removeMin has a best case runtime of Θ(1) and a worst case runtime of

Θ(logN).

2. insert has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

3. A pre order or level order traversal on a min-heap can output the elements in

sorted order.

Explanation: The smallest item of a min heap is at the top, so whatever

traversal we choose must output the top element first in a complete binary

tree. Only preorder and level-order have this property.

4. The fourth smallest element in a min-heap with 1000 distinct elements can

appear in 14 places in the heap.

Explanation: The 4th smallest item can be on the 2nd, 3rd, or 4th level of

the heap.

5. Given a min-heap with 2N − 1 distinct elements, for an element -



2 Heaps and Hashing

• to be on the second level it must be less than 2(N−1) − 2 element(s) and

greater than 1 element(s).

• to be on the bottommost level it must be less than 0 element(s) and

greater than N - 1 element(s). (must be greater than the elements on its

branch)

Explanation: An element on the second level must be larger than the root and

less than the elements in its subtree. There are 2(N−1) − 2 elements in the subtree

of an element on the second level: half the elements in the tree minus the root, then

subtracting off the node itself.

An element on the bottom level must be greater than all elements on the path from

itself to the root. A min heap with 2N − 1 elements has N levels, so there are N -

1 items above it on a path to the root.



Heaps and Hashing 3

2 Heap Mystery
We are given the following array representing a min-heap where each letter repre-

sents a unique number. Assume the root of the min-heap is at index zero, i.e. A

is the root. Note that there is no significance of the alphabetical ordering, i.e. just

because B precedes C in the alphabet, we do not know if B is less than or greater

than C.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is

either a removeMin or an insert. The resulting state of the min-heap is shown

below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first op-

eration has already been filled in for you!

1. removeMin()

2.

3.

4.

Solution:

1. removeMin()

2. insert(X)

3. removeMin()

4. insert(A)

Explanation: We know immediately that A was removed. Then, after looking

at the final state of the min-heap, we see that C was removed. Then, for A

to remain in the min-heap, we see that A must have been inserted afterwards.

And, after seeing a new value X in the min-heap, we see that X must have

been inserted as well. We just need to determine the relative ordering of the

insert(X) in between the operations removeMin() and insert(A), and we see

that the insert(X) must go before both.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We

recommend considering which elements were compared to reach the final array.

1. X D

2. X C

3. B C

4. G X

Solution:

1. X ? D



4 Heaps and Hashing

2. X > C

3. B > C

4. G < X

Reasoning:

1. X is never compared to D

2. X must be greater than C since C is removed after X’s insertion.

3. B must also be greater than C otherwise the second call to removeMin would

have removed B

4. X must be greater than G so that it can be ”promoted” to the top after the

removal of C. It needs to be promoted to the top to land in its new position.



Heaps and Hashing 5

3 Hashing Gone Crazy
For this question, use the following TA class for reference.

1 public class TA {

2 int charisma;

3 String name;

4 TA(String name, int charisma) {

5 this.name = name;

6 this.charisma = charisma;

7 }

8 @Override

9 public boolean equals(Object o) {

10 TA other = (TA) o;

11 return other.name.charAt(0) == this.name.charAt(0);

12 }

13 @Override

14 public int hashCode() {

15 return charisma;

16 }

17 }

Assume that the hashCode of a TA object returns charisma, and the equals method

returns true if and only if two TA objects have the same first letter in their name.

Assume that the ECHashMap is a HashMap implemented with external chaining as

depicted in lecture. The ECHashMap instance begins at size 4 and, for simplicity,

does not resize. Draw the contents of map after the executing the insertions below:

1 ECHashMap<TA, Integer> map = new ECHashMap<>();

2 TA sohum = new TA("Sohum", 10);

3 TA vivant = new TA("Vivant", 20);

4 map.put(sohum, 1);

5 map.put(vivant, 2);

6

7 vivant.charisma += 2;

8 map.put(vivant, 3);

9

10 sohum.name = "Vohum";

11 map.put(vivant, 4);

12

13 sohum.charisma += 2;

14 map.put(sohum, 5);

15

16 sohum.name = "Sohum";

17 TA shubha = new TA("Shubha", 24);

18 map.put(shubha, 6);



6 Heaps and Hashing

Solution:

Explanation:

Line 4: sohum has charisma value 10. 10 % 4 = 2, so sohum is placed in bucket 2

with value 1.

0: [], 1: [], 2: [(sohum, 1)], 3: []

Line 5: vivant is placed in bucket 0 with value 2.

0: [(vivant, 2)], 1: [], 2: [(sohum, 1)], 3: []

Line 7: Increasing the charisma value of vivant does not cause it to be rehashed!

(This is why modifying objects in a Hashmap is dangerous–it can change the hash-

code of your object and make it impossible to find which bucket it belongs to).

Line 8: vivant now has charisma 4, so bucket 2 also has a node pointing to vivant,

with value 3. (Note that the two vivants refer to the same object).

0: [(vivant, 2)], 1: [], 2: [(sohum, 1), (vivant, 3)], 3: []

Line 11, 12: vivant with charisma 22 hashes to bucket 2. However, since we

have changed sohum’s name to be "Vohum", vivant.equals(sohum) returns true.

Since we are hashing a key that is already present in the dictionary according to

.equals, we replace sohum’s old value with the new value, 4.

0: [(vivant, 2)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []

Line 13, 14: sohum with charisma 12 hashes to bucket 0. However, since we

have changed sohum’s name to be "Vohum", sohum.equals(vivant) returns true.

Since we are hashing a key that is already present in the dictionary according to

.equals, we replace vivant’s old value with the new value, 5.

0: [(vivant, 5)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []

Line 16, 17, 18: shuba hashes to bucket 0. shuba.equals(vivant) returns false,

so we add a new node after vivant with value 6.

0: [(vivant, 5), (shuba, 6)], 1: [], 2: [(sohum, 4), (vivant, 3)], 3: []



Heaps and Hashing 7

4 Buggy Hash
The following classes may contain a bug in one of its methods. Identify those errors

and briefly explain why they are incorrect and in which situations would the bug

cause problems.

1 class Timezone {

2 String timeZone; // "PST", "EST" etc.

3 boolean dayLight;

4 String location;

5 ...

6 public int currentTime() {

7 // return the current time in that time zone

8 }

9 public int hashCode() {

10 return currentTime();

11 }

12 public boolean equals(Object o) {

13 Timezone tz = (Timezone) o;

14 return tz.timeZone.equals(timeZone);

15 }

16 }

Solution:

Although equal objects will have the same hashcode, but the problem here is that

hashCode() is not deterministic. This may result in weird behaviors (e.g. the

element getting lost) when we try to put or access elements.

1 class Course {

2 int courseCode;

3 int yearOffered;

4 String[] staff;

5 ...

6 public int hashCode() {

7 return yearOffered + courseCode;

8 }

9 public boolean equals(Object o) {

10 Course c = (Course) o;

11 return c.courseCode == courseCode;

12 }

13 }

Solution: The problem with this hashCode() is that not all equal objects have

the same hashcode. This may produce unexpected behavior, e.g. multiple ”equal”

objects may be exist in different buckets in the HashMap, the containsKey operation

may return false, etc. One key thing to remember is that when we override the

equals() method, we have to also override the hashCode() method to ensure equal

objects have the same hashCode.


	Fill in the Blanks
	Heap Mystery
	Hashing Gone Crazy
	Buggy Hash

