CS 61B Sorting
FaH 2021 Exam Prep Discussion 11: November 1, 2021

| Identﬂ&ing Sorts

Below you will find intermediate steps in performing various sorting algorithms
on the same input list. The steps do not necessarily represent consecutive steps
in the algorithm (that is, many steps are missing), but they are in the correct
sequence. For each of them, select the algorithm it illustrates from among the
following choices: insertion sort, selection sort, mergesort, quicksort (first element
of sequence as pivot), and heapsort. When we split an odd length array in half in
mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000
(a) 1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

Mergesort. One identifying feature of mergesort is that the left and right halves

do not interactwith each other until the very end.

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392
192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning
the first iteration should break up the array into something like | < 1429 | =
1429 | > 1429

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000
192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000
192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

Insertion Sort. Insertion sort starts at the front, and for each item, move to
the front as far as possible. These are the first few iterations of insertion sort

so the right side is left unchanged

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192
7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

2

Sorting

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

Heapsort. This one’s a bit more tricky. Basically what’s happening is that the
second line is in the middle of heapifying this list into a maxheap. Then we

continually remove the max and place it at the end.

In all these cases, the final step of the algorithm will be this:
129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

2

Sorting 3

Sorted Runtimes

We want to sort an array of N unique numbers in ascending order. Determine the

best case and worst case runtimes of the following sorts:

(a)

()

Once the runs in merge sort are of size <= N/100, we perform insertion sort
on them.

Best Case: O(), Worst Case: ©()

Solution:
Best Case: O(N), Worst Case: O(N?)

Once we have 100 runs of size N/100, insertion sort will take best case ©(N)
and worst case ©(N?) time. The constant number of linear time merging

operations don’t add to the runtime.

We can only swap adjacent elements in selection sort.
Best Case: O(), Worst Case: O()

Solution:
Best Case: ©(N?), Worst Case: O(N?)

The best case and worst case don’t change since swapping at most doubles the
work each iteration, which produces the same asymptotic runtime as normal

selection sort.
We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: O(), Worst Case: ©()

Solution:
Best Case: ©(N log(NN)), Worst Case: ©(N log(N))

Doing an extra N work each iteration of quicksort doesn’t asymptotically

change the best case runtime, but it improves the worst case runtime.

We implement heapsort with a min-heap instead of a max-heap. You may

modify heapsort but must maintain constant space complexity.
Best Case: O(), Worst Case: O()

Solution:
Best Case: ©(N log(NN)), Worst Case: ©(N log(N))

While a max-heap is better, we can make do with a min-heap by placing
the smallest element at the right end of the list until the list is sorted in
descending order. Once the list is in descending order, it can be sorted in
ascending order with a simple linear time pass.

We run an optimal sorting algorithm of our choosing knowing:

e There are at most N inversions

Best Case: ©(), Worst Case: O()

4

Sorting

Solution:
Best Case: O(N), Worst Case: O(N)

Recall that insertion sort takes (N + K) time, where K is the number
of inversions. If K is at most N, then, insertion sort has the best and
worst case runtime of ©(N). Here is an explanation for why no sorting
algorithm can surpass this. Notice for our algorithm to terminate we
either need to address every inversion or look at every element. Since
there are at most N inversions, knowing that we have addressed every
inversion would take us at least ©(N) time. Looking at every element in
the list would also take us ©(N) time. In either case, we see the runtime

of any sorting algorithm cannot be faster than O(N).

There is exactly 1 inversion
Best Case: O(), Worst Case: ©()

Solution:
Best Case: O(1), Worst Case: O(N)

The inversion may be the first two elements, in which case constant time
is needed. Or, it may involve elements at the end, in which case N time
is needed. It can be proven quite simply that no sorting algorithm can

achieve a better runtime than above for the best and worst case.
There are exactly (N2 — N)/2 inversions

Best Case: ©(), Worst Case: ©()

Solution:
Best Case: ©(N), Worst Case: O(N)

If a list has N(N — 1)/2 inversions, it means it is sorted in descending
order! So, it can be sorted in ascending order with a simple linear time
pass. We know that reversing any array is a linear time operation, so the

optimal runtime of any sorting algorithm is O(V).

20

21

22

23

24

25

26

27

28

29

30

31

Sorting 5

3 MSD Radix Sort

Recursively implement the method msd below, which runs MSD radix sort on a List
of Strings and returns a sorted List of Strings. For simplicity, assume that each

string is of the same length. You may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort,
but any sort works! For the subroutine here, you may use the stableSort method,
which sorts the given list of strings in place, comparing two strings by the given

index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this

list between the specified fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the
specified collection to the end of this list, in the order that they are returned

by the specified collection’s iterator.

public static List<String> msd(List<String> items) {

return H

private static List<String> msd(List<String> items, int index) {

if () {

return items;

}
List<String> answer = new ArraylList<>();
int start = 0;

for (int end = 1; end <= items.size(); end += 1) {

if () {

b

return answer;
}
/* You don't need to understand the implementation of this method to use it! =%/
private static void stableSort(List<String> items, int index) {
items.sort(Comparator.comparingInt(o -> o.charAt(index)));

20

21

22

23

24

25

6 Sorting

Solution:

public static List<String> msd(List<String> items) {
return msd(items, 0);

private static List<String> msd(List<String> items, int index) {
if (items.size() <= 1 || index >= items.get(0).length()) {
return items;
3
List<String> answer = new ArraylList<>();
stableSort(items, index);
int start = 0;
for (int end = 1; end <= items.size(); end += 1) {

if (end == items.size() || items.get(start).charAt(index) != items.get(end).charAt(index)) {

List<String> subList = items.subList(start, end);
answer.addAll (msd(subList, index + 1));
start = end;

}

return answer;

/* You don't need to understand the implementation of this method to use it! =*/

private static void stableSort(List<String> items, int index) {
items.sort(Comparator.comparingInt(o -> o.charAt(index)));

b

Explanation: MSD sort starts with the leftmost (most significant) digit, grouping
and sorting all elements by that digit. It then proceeds recursively on each group.
The helper function msd(items, index) tells us which index we’re currently sorting
items by, which is initialized to @ by the original msd function. The base case is if
there is 1 item or less (the list is already sorted), or if we've sorted every possible
index.

Otherwise, we use stablesort to sort by the current index. Note that the subroutine
to sort by index must be stable; otherwise we lose the ordering imposed by the
previous indices we’ve already sorted.

Inside the loop, start and end track the start and end indices of our curent group
(items that share the same value at index). If our current end differs from start,
we must have reached an item with a different value at index, so we take everything
from start: end (exclusive) to get the current group, recursively sorting that group

on the next index.

Sorting 7

4 Bears and Beds

The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help
them place their customers in the best possible homes to improve their experience.
They are currently in their alpha stage so their only customers (for now) are bears.
Now, a little known fact about bears is that they are very, very picky about their
bed sizes: they do not like their beds too big or too little - they like them just right.
Bears are also sensitive creatures who don’t like being compared to other bears, but

they are perfectly fine with trying out beds.
The Problem:

Given a list of Bears with unique but unknown sizes and a list of Beds with corre-
sponding but also unknown sizes (not necessarily in the same order), return a list
of Bears and a list of Beds such that that the ith Bear in your returned list of Bears
is the same size as the ith Bed in your returned list of Beds. Bears can only be
compared to Beds and we can get feedback on if the Bed is too large, too small,
or just right. In addition, Beds can only be compared to Bears and we can get

feedback if the Bear is too large for it, too small for it, or just right for it.

The Constraints:
Your algorithm should run in O(N log N) time on average. It may be helpful to

figure out the naive O(N?) solution first and then work from there.

Solution:

Our solution will modify quicksort. Let’s begin by choosing a pivot from the Bears
list. To avoid quicksort’s worst case behavior on a sorted array, we will choose a ran-
dom Bear as the pivot. Next we will partition the Beds into three groups — those
less than, equal to, and greater than the pivot Bear. Next, we will select a pivot
from the Beds list. This is very important — our pivot Bed will be the Bed that is
equal to the pivot Bear. Given that the Beds and Bears have unique sizes, we know
that exactly one Bed will be equal to the pivot Bear. Next we will partition the

Bears into three groups — those less than, equal to, and greater than the pivot Bed.

Next, we will "match” the pivot Bear with the pivot Bed by adding them to the
Bears and Beds lists at the same index, which is as easy as just adding to the end.
Finally, in the same fashion as quicksort, we will have two recursive calls. The first
recursive call will contain the Beds and Bears that are less than their respective
pivots. The second recursive call will contain the Beds and Bears that are greater
than their respective pivots.

Here is a video walkthrough of the solutions as well

https://youtu.be/EF3_vcXADfc

	Identifying Sorts
	Sorted Runtimes
	MSD Radix Sort
	Bears and Beds

