
CS 61B Balanced Search
Fall 2021 Exam Prep Discussion 12: November 8, 2021

1 Balancing Trees
We are given the following extremely unbalanced search tree.

Select the minimum number of rotations in the correct order required to balance

this tree. Hint : The resulting tree should have two layers of nodes below the root.

[] Rotate left on 8

[] Rotate right on 8

[] Rotate left on 6

[] Rotate right on 6

[] Rotate left on 4

[] Rotate right on 4

[] Rotate left on 3

[] Rotate right on 3

[] Rotate left on 2

[] Rotate right on 2

[] Rotate left on 1

[] Rotate right on 1

[] Rotate left on 0

[] Rotate right on 0

2 Balanced Search

2 LLRBs
a) (2 Points). Perform the following insertions on the Left Leaning Red Black

Tree (LLRB) given below. For each insertion, give the fix up operations needed.

Recall a fix up operation is one of the following:

• rotateLeft

• rotateRight

• colorFlip

• change the root node to black.

Note that insertions are dependent. If only two operations are necessary, pick

“None” for the third operation. If only one operation is necessary, pick “None” for

the second and third operation. If no operations are necessary, pick “None” for all

three operations.

If you put “None” for the “Operation applied”, leave the “Node to apply on”

blank. (Summer 2021 MT2)

i) (0.5 Points). Insert 17

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

ii) (0.5 Points). Insert 15. Note that insertions are dependent, so insert 15 into

the state of the LLRB after the insertion of 17.

Balanced Search 3

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

iii) (0.75 Points). Insert 13. Note that insertions are dependent, so insert 13 into

the state of the LLRB after the insertion of 15.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

iv) (0.75 Points). Insert 19. Note that insertions are dependent, so insert 19 into

the state of the LLRB after the insertion of 13.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

4 Balanced Search

b) (1.5 Points). The tree below is not a valid LLRB (hint: to see why this is

the case, draw the corresponding 2-3 tree) but it’s close! In this part, we will try

to transform it into a valid LLRB in two different ways. Note that each way acts

independently of the previous. If a way isn’t possible, put impossible. Recall

that LLRBs cannot have duplicates.

i) (0.75 Points). Way 1: Remove a single leaf node from the tree. Which leaf

node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible

ii) (0.75 Points). Way 2: Flip the color of a single node. Which node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible

Balanced Search 5

3 Trees
The simple tree below can be a BST, 2-3 Tree, or even an LLRB!

a) (1 Point). Suppose it is a BST. Select all the insertion orderings that can

produce the BST above. (Summer 2021 MT2)

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

b) (1 Point). Now, suppose it is a 2-3 Tree. Select all the insertion orderings that

can produce the 2-3 Tree above.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

c) (2.5 Points). Now, suppose it is an LLRB with only black nodes.

i) (0.75 Points). Select all the insertion orderings that can produce the LLRB

above.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

ii (0.75 Points). Which insertion ordering requires the minimum number of

rotateLeft and rotateRight calls. If multiple produce the minimum, select all.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

iii) (1 Point). Which insertion ordering requires the maximum number of

rotateLeft and rotateRight calls. If multiple produce the maximum, select all.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

	Balancing Trees
	LLRBs
	Trees

