
CS 61B Balanced Search
Fall 2021 Exam Prep Discussion 12: November 8, 2021

1 Balancing Trees
We are given the following extremely unbalanced search tree.

Select the minimum number of rotations in the correct order required to balance

this tree. Hint : The resulting tree should have two layers of nodes below the root.

[] Rotate left on 8

[] Rotate right on 8

[] Rotate left on 6

[] Rotate right on 6

[] Rotate left on 4

[] Rotate right on 4

[] Rotate left on 3

[] Rotate right on 3

[] Rotate left on 2

[] Rotate right on 2

[] Rotate left on 1

[] Rotate right on 1

[] Rotate left on 0

[] Rotate right on 0

Solution:

[] Rotate left on 8

[X] Rotate right on 8

[] Rotate left on 6

[X] Rotate right on 6

[] Rotate left on 4

[] Rotate right on 4

[] Rotate left on 3

[] Rotate right on 3

[] Rotate left on 2

[] Rotate right on 2

[] Rotate left on 1

2 Balanced Search

[] Rotate right on 1

[] Rotate left on 0

[] Rotate right on 0

Explanation: Rotating right on 8, then on 6, makes 3 the new root of the tree

(with 6 as the right child). Verify this for yourself.

Balanced Search 3

2 LLRBs
a) (2 Points). Perform the following insertions on the Left Leaning Red Black

Tree (LLRB) given below. For each insertion, give the fix up operations needed.

Recall a fix up operation is one of the following:

• rotateLeft

• rotateRight

• colorFlip

• change the root node to black.

Note that insertions are dependent. If only two operations are necessary, pick

“None” for the third operation. If only one operation is necessary, pick “None” for

the second and third operation. If no operations are necessary, pick “None” for all

three operations.

If you put “None” for the “Operation applied”, leave the “Node to apply on”

blank. (Summer 2021 MT2)

i) (0.5 Points). Insert 17

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

Solution:

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

4 Balanced Search

Explanation: 17 is inserted as the left child of 18. No fixes are required at this

point.

ii) (0.5 Points). Insert 15. Note that insertions are dependent, so insert 15 into

the state of the LLRB after the insertion of 17.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

Solution:

Operation applied Node to apply on

1st operation

√
rotateLeft() © rotateRight() © colorFlip()

© change root to black © None
14

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

Explanation: 15 is inserted as the right child of 14. This requires a left rota-

tion of 14 to maintain the left-leaning invariant.

iii) (0.75 Points). Insert 13. Note that insertions are dependent, so insert 13 into

the state of the LLRB after the insertion of 15.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

Solution:

Operation applied Node to apply on

1st operation
© rotateLeft()

√
rotateRight() © colorFlip()

© change root to black © None
15

2nd operation
© rotateLeft() © rotateRight()

√
colorFlip()

© change root to black © None
14

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black
√

None

Explanation: 13 is inserted as the left child of 14. This requires a right rota-

Balanced Search 5

tion on 15, since you cannot have 2 left red nodes in a row; then you must color flip

14 to break up the 4-node.

iv) (0.75 Points). Insert 19. Note that insertions are dependent, so insert 19 into

the state of the LLRB after the insertion of 13.

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

2nd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

3rd operation
© rotateLeft() © rotateRight() © colorFlip()

© change root to black © None

Solution:

Operation applied Node to apply on

1st operation
© rotateLeft() © rotateRight()

√
colorFlip()

© change root to black © None
18

2nd operation
© rotateLeft() © rotateRight()

√
colorFlip()

© change root to black © None
16

3rd operation

√
rotateLeft() © rotateRight() © colorFlip()

© change root to black © None
12

Explanation: 19 is inserted as the right child of 18. This requires a color flip

on 18 to break up the 4-node, then a color flip on 16 which not has 2 red children.

After this, a left rotation on 12 is required since it has a red right child.

6 Balanced Search

b) (1.5 Points). The tree below is not a valid LLRB (hint: to see why this is

the case, draw the corresponding 2-3 tree) but it’s close! In this part, we will try

to transform it into a valid LLRB in two different ways. Note that each way acts

independently of the previous. If a way isn’t possible, put impossible. Recall

that LLRBs cannot have duplicates.

i) (0.75 Points). Way 1: Remove a single leaf node from the tree. Which leaf

node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible

Solution:

© 2 © 4 © 8 © 10 © 12
√

14 © 16 © impossible

Explanation: A LLRB always has the same ”black height” (number of black nodes

from root to leaf). Note that the left child has a ”black height” of 2 but the right

has a black height of 3; thus deleting 14 makes this a valid LLRB.

ii) (0.75 Points). Way 2: Flip the color of a single node. Which node?

© 2 © 4 © 8 © 10 © 12 © 14 © 16 © impossible

Solution:

© 2 © 4 © 8 © 10 © 12
√

14 © 16 © impossible

Explanation: Like above, flipping 14 decreases the black height of the right child

by 1, making it valid.

Balanced Search 7

3 Trees
The simple tree below can be a BST, 2-3 Tree, or even an LLRB!

a) (1 Point). Suppose it is a BST. Select all the insertion orderings that can

produce the BST above. (Summer 2021 MT2)

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Solution:

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Explanation: For 2 to be the root, it must be inserted first (otherwise the BST

will be a linear chain). This corresponds to the third and fourth options.

b) (1 Point). Now, suppose it is a 2-3 Tree. Select all the insertion orderings that

can produce the 2-3 Tree above.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Solution:

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Explanation: A 2-3 tree is always balanced, so any insertion order will result in

the balanced binary tree above.

c) (2.5 Points). Now, suppose it is an LLRB with only black nodes.

i) (0.75 Points). Select all the insertion orderings that can produce the LLRB

above.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Solution:

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Explanation: A LLRB with only black nodes is always balanced, so any insertion

order will result in the balanced binary tree above.

8 Balanced Search

ii (0.75 Points). Which insertion ordering requires the minimum number of

rotateLeft and rotateRight calls. If multiple produce the minimum, select all.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Solution:

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Explanation: Note that if 2 is not inserted first, there will always be at least 1

rotation required to make it the root. If 3 is inserted before 1, there will be one

rotation after 3 is inserted (2 cannot have a right red child), then another rotation

to balance the tree after 1 is inserted. Thus, the optimal ordering is 213.

iii) (1 Point). Which insertion ordering requires the maximum number of

rotateLeft and rotateRight calls. If multiple produce the maximum, select all.

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Solution:

� 1, 2, 3 � 1, 3, 2 � 2, 1, 3 � 2, 3, 1 � 3, 1, 2 � 3, 2, 1

� None of the above

Explanation: To maxmize the number of rotations, both insertions should be a

right child (to force a left rotation). This only happens in the ordering 1, 3, 2. In

particular, 1, 3, 2 requires 3 rotations (rotate 1 left, rotate 2 left, rotate 3 right).

	Balancing Trees
	LLRBs
	Trees

