CS 61B Fall 2021

Balanced Search Exam Prep Discussion 12: November 8, 2021

1 Balancing Trees

We are given the following extremely unbalanced search tree.

Select the minimum number of rotations in the correct order required to balance this tree. *Hint*: The resulting tree should have two layers of nodes below the root.

- [] Rotate left on 8
- [] Rotate right on 8
- [] Rotate left on 6
- [] Rotate right on 6
- [] Rotate left on 4
- [] Rotate right on 4
- [] Rotate left on 3
- [] Rotate right on 3
- [] Rotate left on 2
- [] Rotate right on 2
- [] Rotate left on 1
- [] Rotate right on 1
- [] Rotate left on 0
- [] Rotate right on 0

Solution:

- [] Rotate left on 8
- [X] Rotate right on 8
- [] Rotate left on 6
- [X] Rotate right on 6
- [] Rotate left on 4
- [] Rotate right on 4
- [] Rotate left on 3
- [] Rotate right on 3
- [] Rotate left on 2
- [] Rotate right on 2
- [] Rotate left on 1

2 Balanced Search

- [] Rotate right on 1[] Rotate left on 0
- [] Rotate right on 0

Explanation: Rotating right on 8, then on 6, makes 3 the new root of the tree (with 6 as the right child). Verify this for yourself.

2 LLRBs

a) (2 Points). Perform the following insertions on the Left Leaning Red Black Tree (LLRB) given below. For each insertion, give the fix up operations needed. Recall a fix up operation is one of the following:

- rotateLeft
- rotateRight
- colorFlip
- change the root node to black.

Note that insertions are **dependent**. If only two operations are necessary, pick "None" for the third operation. If only one operation is necessary, pick "None" for the second and third operation. If no operations are necessary, pick "None" for all three operations.

If you put "None" for the "Operation applied", **leave the "Node to apply on" blank.** (Summer 2021 MT2)

i) (0.5 Points). Insert 17

	Operation applied	Node to apply on
1st operation	○ rotateLeft() ○ rotateRight() ○ colorFlip	()
ist operation	\bigcirc change root to black \bigcirc None	
2nd operation	○ rotateLeft() ○ rotateRight() ○ colorFlip	()
	\bigcirc change root to black \bigcirc None	
2nd opporation	○ rotateLeft() ○ rotateRight() ○ colorFlip	()
ord operation	\bigcirc change root to black \bigcirc None	

Solution:

	Operation applied	Node to apply on	
1st operation	<pre>O rotateLeft() O rotateRight()</pre>	<pre>O colorFlip()</pre>	
	\bigcirc change root to black \checkmark None		
2nd operation	<pre>O rotateLeft() O rotateRight()</pre>	<pre>O colorFlip()</pre>	
	\bigcirc change root to black \checkmark None		
3rd operation	<pre>O rotateLeft() O rotateRight()</pre>	<pre>O colorFlip()</pre>	
	\bigcirc change root to black \checkmark None		

Explanation: 17 is inserted as the left child of 18. No fixes are required at this point.

ii) (0.5 Points). Insert 15. Note that insertions are dependent, so insert 15 into the state of the LLRB after the insertion of 17.

	Operation applied	Node to apply on
1st operation	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
	\bigcirc change root to black \bigcirc None	
	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
2nd operation	\bigcirc change root to black \bigcirc None	
3rd operation	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
	\bigcirc change root to black \bigcirc None	

Solution:

	Operation applied	Node to apply on
1st operation	$\sqrt{\text{rotateLeft()}}$ \bigcirc rotateRight() \bigcirc colorFlip()	14
1st operation	\bigcirc change root to black \bigcirc None	14
2nd operation	<pre>O rotateLeft() O rotateRight() O colorFlip()</pre>	
	\bigcirc change root to black \checkmark None	
3rd operation	<pre>O rotateLeft() O rotateRight() O colorFlip()</pre>	
	\bigcirc change root to black $$ None	

Explanation: 15 is inserted as the right child of 14. This requires a left rotation of 14 to maintain the left-leaning invariant.

iii) (0.75 Points). Insert 13. Note that insertions are dependent, so insert 13 into the state of the LLRB after the insertion of 15.

	Operation applied	Node to apply on
1st energian	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
ist operation	\bigcirc change root to black \bigcirc None	
2nd operation	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
	\bigcirc change root to black \bigcirc None	
3rd operation	<pre>○ rotateLeft() ○ rotateRight() ○ colorFlip()</pre>	
	\bigcirc change root to black \bigcirc None	

Solution:

	Operation applied	Node to apply on
1st operation	\bigcirc rotateLeft() $\sqrt{\text{rotateRight()}} \bigcirc$ colorFlip()	15
ist operation	\bigcirc change root to black \bigcirc None	10
2nd operation	\bigcirc rotateLeft() \bigcirc rotateRight() $$ colorFlip()	14
	\bigcirc change root to black \bigcirc None	14
3rd operation	<pre>O rotateLeft() O rotateRight() O colorFlip()</pre>	
	\bigcirc change root to black \checkmark None	

Explanation: 13 is inserted as the left child of 14. This requires a right rota-

tion on 15, since you cannot have 2 left red nodes in a row; then you must color flip 14 to break up the 4-node.

iv) (0	0.75 I	Points)	. Insert	19. ľ	Note t	hat i	nsertions	are	dependent	, so	insert	19 iı	nto
the st	tate of	the LL	RB afte	er the	inser	tion of	of 13.						

	Operation applied	Node to apply on	
1st operation	○ rotateLeft() ○ rotateRight()	<pre>O colorFlip()</pre>	
1st operation	\bigcirc change root to black \bigcirc None		
2nd operation	○ rotateLeft() ○ rotateRight()	<pre>O colorFlip()</pre>	
	\bigcirc change root to black \bigcirc None		
2nd energian	○ rotateLeft() ○ rotateRight()	<pre>O colorFlip()</pre>	
ord operation	\bigcirc change root to black \bigcirc None		

Solution:

	Operation applied	Node to apply on
1st operation	\bigcirc rotateLeft() \bigcirc rotateRight() $$ colorFlip()	10
1st operation	\bigcirc change root to black \bigcirc None	10
On domention	\bigcirc rotateLeft() \bigcirc rotateRight() $$ colorFlip()	16
	\bigcirc change root to black \bigcirc None	10
2nd operation	$\sqrt{\text{rotateLeft()}}$ \bigcirc rotateRight() \bigcirc colorFlip()	10
ord operation	\bigcirc change root to black \bigcirc None	12

Explanation: 19 is inserted as the right child of 18. This requires a color flip on 18 to break up the 4-node, then a color flip on 16 which not has 2 red children. After this, a left rotation on 12 is required since it has a red right child.

b) (1.5 Points). The tree below is **not** a valid LLRB (hint: to see why this is the case, draw the corresponding 2-3 tree) but it's close! In this part, we will try to *transform* it into a valid LLRB in two different ways. Note that each way acts **independently** of the previous. If a way isn't possible, put **impossible**. Recall that LLRBs **cannot** have duplicates.

i) (0.75 Points). Way 1: Remove a single leaf node from the tree. Which leaf node?

 \bigcirc 2 \bigcirc 4 \bigcirc 8 \bigcirc 10 \bigcirc 12 \bigcirc 14 \bigcirc 16 \bigcirc impossible

Solution:

 \bigcirc 2 \bigcirc 4 \bigcirc 8 \bigcirc 10 \bigcirc 12 $\sqrt{14}$ \bigcirc 16 \bigcirc impossible

Explanation: A LLRB always has the same "black height" (number of black nodes from root to leaf). Note that the left child has a "black height" of 2 but the right has a black height of 3; thus deleting 14 makes this a valid LLRB.

ii) (0.75 Points). Way 2: Flip the color of a single node. Which node?

 \bigcirc 2 \bigcirc 4 \bigcirc 8 \bigcirc 10 \bigcirc 12 \bigcirc 14 \bigcirc 16 \bigcirc impossible

Solution:

 \bigcirc 2 \bigcirc 4 \bigcirc 8 \bigcirc 10 \bigcirc 12 \checkmark 14 \bigcirc 16 \bigcirc impossible

Explanation: Like above, flipping 14 decreases the black height of the right child by 1, making it valid.

3 Trees

The simple tree below can be a BST, 2-3 Tree, or even an LLRB!

a) (1 Point). Suppose it is a BST. Select all the insertion orderings that can produce the BST above. (Summer 2021 MT2)

 $\Box 1, 2, 3 \Box 1, 3, 2 \Box 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1$ \Box None of the above

Solution:

 \Box 1, 2, 3 \Box 1, 3, 2 \blacksquare 2, 1, 3 \blacksquare 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1 \Box None of the above

Explanation: For 2 to be the root, it must be inserted first (otherwise the BST will be a linear chain). This corresponds to the third and fourth options.

b) (1 Point). Now, suppose it is a 2-3 Tree. Select all the insertion orderings that can produce the 2-3 Tree above.

 $\Box 1, 2, 3 \Box 1, 3, 2 \Box 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1$ \Box None of the above

Solution:

■ 1, 2, 3 ■ 1, 3, 2 ■ 2, 1, 3 ■ 2, 3, 1 ■ 3, 1, 2 ■ 3, 2, 1 □ None of the above

Explanation: A 2-3 tree is always balanced, so any insertion order will result in the balanced binary tree above.

c) (2.5 Points). Now, suppose it is an LLRB with only black nodes.
i) (0.75 Points). Select all the insertion orderings that can produce the LLRB

 \Box 1, 2, 3 \Box 1, 3, 2 \Box 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1 \Box None of the above

Solution:

above.

■ 1, 2, 3 ■ 1, 3, 2 ■ 2, 1, 3 ■ 2, 3, 1 ■ 3, 1, 2 ■ 3, 2, 1 □ None of the above

Explanation: A LLRB with only black nodes is always balanced, so any insertion order will result in the balanced binary tree above.

ii (0.75 Points). Which insertion ordering requires the minimum number of rotateLeft and rotateRight calls. If multiple produce the minimum, select all.

 $\Box 1, 2, 3 \Box 1, 3, 2 \Box 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1$ $\Box None of the above$

Solution:

 \Box 1, 2, 3 \Box 1, 3, 2 \blacksquare 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1 \Box None of the above

Explanation: Note that if 2 is not inserted first, there will always be at least 1 rotation required to make it the root. If 3 is inserted before 1, there will be one rotation after 3 is inserted (2 cannot have a right red child), then another rotation to balance the tree after 1 is inserted. Thus, the optimal ordering is 213.

iii) (1 Point). Which insertion ordering requires the maximum number of rotateLeft and rotateRight calls. If multiple produce the maximum, select all.
□ 1, 2, 3
□ 1, 3, 2
□ 2, 1, 3
□ 2, 3, 1
□ 3, 1, 2
□ 3, 2, 1
□ None of the above

Solution:

 \Box 1, 2, 3 \blacksquare 1, 3, 2 \Box 2, 1, 3 \Box 2, 3, 1 \Box 3, 1, 2 \Box 3, 2, 1 \Box None of the above

Explanation: To maximize the number of rotations, both insertions should be a right child (to force a left rotation). This only happens in the ordering 1, 3, 2. In particular, 1, 3, 2 requires 3 rotations (rotate 1 left, rotate 2 left, rotate 3 right).