CS 61B More Shortest Paths and MSTs
Faﬂ 2021 Exam Prep Discussion 14: November 29, 2021

1

(a)

Introduction to MSTs

\/

For the graph above, list the edges in the order they’'re added to the MST by
Kruskal’s and Prim’s algorithm. Assume Prim’s algorithm starts at vertex A.
Assume ties are broken in alphabetical order. Denote each edge as a pair of
vertices (e.g. AB is the edge from A to B)

Prim’s algorithm order:
Kruskal’s algorithm order:

Prim’s algorithm order: AB, BC, BE, EF, BG, CD
Kruskal’s algorithm order: EF, BC, BE, BG, AB, CD

Is there any vertex for which the shortest paths tree from that vertex is the

same as your Prim MST? If there are multiple viable vertices, list all.

Vertex B, A, or G

True/False: Adding 1 to the smallest edge of a graph G with unique edge
weights must change the total weight of its MST

True, either this smallest edge (now with weight +1) is included, or this smallest
edge is not included and some larger edge takes its place since there was no other

edge of equal weight. Either way, the total weight increases.

True/False: The shortest path from vertex A to vertex B in a graph G is the
same as the shortest path from A to B using only edges in T, where T is the
MST of G.



2 More Shortest Paths and MSTs

False, consider vertices C and E in the graph above

(e) True/False: Given any cut, the maximum-weight crossing edge is in the maxi-

mum spanning tree.

True, we can use the cut-property proof as seen in class, but replace ”smallest”

with ”largest”.



More Shortest Paths and MSTs 3

2 Multiple MSTs

Recall a graph can have multiple MSTs if there are multiple spanning trees of

minimum weight.

(a) For each subpart below, select the correct option and justify your answer. If
you select “never” or “always,” provide a short explanation. If you select
“sometimes”, provide two graphs that fulfill the given properties — one with

multiple MSTs and one without. Assume G is an undirected, connected graph.
1. If none the edge weights are identical, there will

(O never be multiple MSTs in G.

(O sometimes be multiple MSTs in G.

(O always be multiple MSTs in G.

Justification:

2. If some of the edge weights are identical, there will
(O never be multiple MSTs in G.
(O sometimes be multiple MSTs in G.
O always be multiple MST's in G.

Justification:

3. If all of the edge weights are identical, there will
(O never be multiple MSTs in G.
(O sometimes be multiple MSTs in G.
(O always be multiple MST's in G.

Justification:



More Shortest Paths and MSTs

Solution:

1. If none the edge weights are identical, there will
B never be multiple MSTs in G.
(O sometimes be multiple MSTs in G.
(O always be multiple MSTs in G.

Justification:

To prove this, we can leverage the cut property. Recall the cut property states
that the cheapest edge in any cut is in some MST. However, if the cheapest
edge in any cut is unique, then we get a stronger claim — the cheapest edge
must be in the MST. As such, if none of the edge weights are identical, i.e.
they are all unique, then the cheapest edge in any cut will always be unique,

and we will only have one MST.

2. If some of the edge weights are identical, there will
(O never be multiple MSTs in G.
B sometimes be multiple MSTs in G.
(O always be multiple MSTs in G.

Justification:

AN
| 1

A
2 >B 2| >B
- L

In the graph on the left, the only MST is [AB, BC]. In the graph on the right,
two MSTs exist — [AB, BC] and [AC, BC].

3. If all of the edge weights are identical, there will
(O never be multiple MSTs in G.
B sometimes be multiple MSTs in G.
(O always be multiple MSTs in G.

Justification:



More Shortest Paths and MSTs 5

B

c

C

In the graph on the left, the only MST is [AB, AC]. Note that for any tree, we
only have one MST, since the tree itself is the MST! In the graph on the right,
three MSTs exist — [AB, BCJ, [AC, BC], and [AB, AC].

Suppose we have a connected, undirected graph G with N vertices and N
edges, where all the edge weights are identical. Find the maximum and
minimum number of MSTs in G and explain your reasoning.

Minimum:

Maximum:

Justification:

Solution: Minimum: 3, Maximum: N

Justification: Notice that if all the edge weights are the same, an MST is just
a spanning tree. Let’s begin by creating a tree, i.e. a connected graph with
N — 1 edges. Now, notice that there is only one spanning tree, since the graph

is itself a tree.

As such, the problem reduces to: how many spanning trees can the insertion
of one edge create? If we add an edge to a tree, it will create a cycle that can
be of length at minimum 3 and at maximum N. Then, notice that we can
only remove any edge from a cycle to create a spanning tree, so we have at

minimum 3 and at maximum N possible MSTs in G.

It is possible that Prim’s and Kruskal’s find different MSTs on the same
graph G (as an added exercise, construct a graph where this is the casel).
Given any graph G with integer edge weights, modify G to ensure that Prim’s
and Kruskal’s will always find the same MST. You may not modify Prim’s or



6

More Shortest Paths and MSTs

Kruskal’s.

Hint: Look at subpart 1 of part a.

Solution: To ensure that Prim’s and Kruskal’s will always produce the same
MST, notice that if G has unique edges, only one MST can exist, and Prim’s
and Kruskal’s will always find that MST! So, what if we modify G to ensure
that all the edge weights are unique?

To achieve this, let’s strategically add a small, unique offset between 0 and
1, exclusive, to each edge. It is important that we choose an offset between
0 and 1 so that this added value doesn’t change the MST, since all the edge
weights are integers. It is also important that the offset is unique for each edge,
because then we ensure each weight is distinct. Pseudocode for such a change

is shown below:

E = number of edges in the graph
offset = 0
for edge in graph:

edge.weight += offset

offset += 1 / E
In regard to the added exercise, here is a simple graph G where Prim’s and
Kruskal’s produce different MSTs. Prim’s starting from A will select AD, BD,
and CD, whereas Kruskals will select AD, BC, and BD.

™

1

B
|
1
I
C

> D 1 A

e




More Shortest Paths and MSTs 7

3 Craph Algorithm Design

Here is a video walkthrough of the solutions. Note that the order of the subparts
have changed. In the video, we first go over part c, then part a, then part b, and
finally part d.

Given a undirected, weighted graph G with positive, integer edge weights, we
want to find a path from u to v that minimizes the total cost. For each “catch”
below, find the path of optimal cost no slower than O(FElogV').

(a) Excluding the start and end vertex, we partition the vertices into 5 subsets,
and we must visit vertices in order of their subset. That is, if we are in subset

k, the next vertex we visit must be in subset k + 1.

Solution:
Modify Dijkstra’s algorithm so that when we visit a vertex in a subset k, we
only consider neighbors in the subset k + 1.

Alternate Solution:

Modify the graph by removing all edges that do not connect vertices of adjacent
subsets. Next, for each remaining edge, we know it must connect vertices in
adjacent subsets, let’s call these subsets k and k 4+ 1. Replace each undirected
edge with a directed edge from k to k + 1. Run Dijkstra’s from u to v.

(b) We must visit two designated vertices s and k on our path.

Explanation:

Notice that the shortest path from u to v will either gou - s -k — voru
— k — s — v, where s — t corresponds to taking a path from s to t. Since we
want the final path of minimum cost, each of these paths should be shortest
paths. As such, we want the following shortest paths:

e u—s
e s —k
ek > v
e u—k
ek —s
e S —V

However, since the graph is undirected, we know that the shortest path from
s to k is the same as the shortest path from k to s, and we can reduce the
required shortest paths to the below:

e S—u
es—k
e s —V
ek > v

ek > v


https://youtu.be/FtLidgKggZk?t=3382

8

More Shortest Paths and MSTs

Well, we did a bit more than "reduce” in the step above, since we also changed
the order of some of the shortest paths to highlight that all of the shortest
paths we need either start from s or k.

Solution:

Run Dijkstra’s from s and from k to find the needed shortest paths in the
previous list. Plug in the calculated shortest paths into the expressions below.

l.u—>s—>k—ov
2 u—-k—-s—v

Return the path with the minimum total weight.

If two paths from u to v are of the same cost, we will choose the path with

fewer edges.

Solution:
Add 1/F to the weight of each edge where E is the number of vertices in the
graph. Run Dijkstra’s from u to v.

So, why does this work, and where did we get the idea to add 1/F to each
edge? Let’s begin with the second question. Intuitively, adding a little to each
edge discourages taking paths with many edges. So why not add 1 to each
edge? Looking at the graph below, if we add 1 to every edge, we have now
changed the shortest path from u to v! The only purpose of the added weight
should bes to break ties between two paths of equal length.

ﬁi
&4

Okay, so we want the amount added to be really small, so why not 0.001, or

even 0.000017 The problem with any constant is that the same problem showed

above may occur for a graph that is really, really big.

Okay, so what if we add an offset that takes in consideration the number
of edges in the graph, like 1/E (or anything smaller than this proportional to
E,eg. 1/E?).

This would work! If we ever have two paths of equal cost, the smallest one path
can be is 1 edge and the largest the other path can be is £ — 1 edges. On the
larger path, notice that the sum of all the offsets comes out to (E—1)/FE, which
is less than 1! Thus, since we are using integer edge weights, this added offset
can only serve to break ties, and is not susceptible to the problem described
above.



More Shortest Paths and MSTs 9

(d) Instead of starting from u and ending at v, we can start from any vertex in a
subset of vertices and end at any vertex in a subset of vertices. Each subset is

of size k.

Solution:

Create two dummy nodes d; and do. Connect d; to every vertex in the start
subset with an edge of zero weight. Connect ds to every vertex in the ending
subset with an edge of zero weight. Run Dijkstra’s from d; to ds. Ignore the

edges connected to d; and ds in the shortest path.



	Introduction to MSTs
	Multiple MSTs
	Graph Algorithm Design

